
Journal Title Here, 2022, pp. 1–2

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

kmtricks: Efficient and flexible construction of Bloom
filters for large sequencing data collections

Téo Lemane,1 Paul Medvedev,2,3,4 Rayan Chikhi5 and Pierre Peterlongo1∗

1Univ. Rennes, Inria, CNRS, IRISA, Rennes, France, 2Department of Computer Science and Engineering, The Pennsylvania State

University, USA, 3Department of Biology, The Pennsylvania State University, USA, 4Huck Institutes of the Life Sciences, The

Pennsylvania State University, USA and 5Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris, F-75015, France
∗Corresponding author. pierre.peterlongo@inria.fr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

When indexing large collections of short-read sequencing data, a common operation that has now been implemented in
several tools (Sequence Bloom Trees and variants, BIGSI, ..) is to construct a collection of Bloom filters, one per sample.
Each Bloom filter is used to represent a set of k-mers which approximates the desired set of all the non-erroneous k-mers
present in the sample. However, this approximation is imperfect, especially in the case of metagenomics data. Erroneous
but abundant k-mers are wrongly included, and non-erroneous but low-abundant ones are wrongly discarded. We propose
kmtricks, a novel approach for generating Bloom filters from terabase-sized collections of sequencing data. Our main
contributions are 1/ an efficient method for jointly counting k-mers across multiple samples, including a streamlined
Bloom filter construction by directly counting, partitioning and sorting hashes instead of k-mers, which is approximately
four times faster than state-of-the-art tools; 2/ a novel technique that takes advantage of joint counting to preserve low-
abundant k-mers present in several samples, improving the recovery of non-erroneous k-mers. Our experiments highlight
that this technique preserves around 8x more k-mers than the usual yet crude filtering of low-abundance k-mers in a large
metagenomics dataset.
Availability: https://github.com/tlemane/kmtricks
Funding: The work was funded by IPL Inria Neuromarkers, ANR Inception (ANR-16-CONV-0005), ANR Prairie (ANR-
19-P3IA-0001), ANR SeqDigger (ANR-19-CE45-0008)

Key words: k-mer, indexing, Bloom filters, k-mer matrix, metagenomics

Introduction

Consortia such as the 100,000 Genomes Project [33],

GEUVADIS [16], MetaSub [23] and Tara Ocean [14] have

generated large collections of genomic, transcriptomic, and

metagenomic sequencing data, respectively. Rather than deep

coverage of a single sample, such datasets contain a collection of

sequencing experiments across many samples. For example, the

Tara Ocean project generated metagenomic sequencing data

across ecological niches all over the oceans, totalling at least

171 petabasepairs. Such valuable resources are unfortunately

hard to comprehensively analyze, since their size makes

bioinformatics analyses difficult.

Traditional sequence analyses such as alignment to a

reference database or de novo assembly are both difficult and

limited in the results they yield. For instance, metagenome

assembly of individual samples (e.g. using MetaSPAdes [25])

is often not able to reconstruct low abundance genomes and

tends to collapse variants between close strains. Co-assembly

of multiple samples pools together coverage from multiple

sites to alleviate this but results in further loss in strain

specificity. Alternatively, aligning raw sequencing data to

genome databases is hindered by the incompleteness of those

databases.

A recently proposed alternative is to build an index of the

raw sequencing data and then later query sequences of interest,

e.g. genes or shorter sequence fragments around variants such as

SNPs or indels. Traditional indexing approaches, such as those

used by BLAST [1] or DIAMOND [7], do not scale to those large

collections [21]. Instead, customized indexing methods have

been under development. A recent review surveyed 20 tools

that were all published in the last couple years, aiming to index

large collections of sequencing data [21], for example BIGSI [6],

HowDe-SBT [12], and Mantis [26]. These indexes are typically able

to answer whether an arbitrary fixed-length sequence (k-mer)

belongs to any of the samples, and, if so, which ones. Though

much progress has been made, indexing a collection such as

Tara Ocean has remained out of practical reach.

The vast majority of these large-scale k-mer indexing tools

are based on common building blocks, three of them being:

1) k-mer counting, which summarizes each sequencing sample

into a set of k-mers along with their abundances, 2), k-mer

1

© The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

email:pierre.perterlongo@inria.fr
https://github.com/tlemane/kmtricks

2 Téo Lemane et al.

matrix construction, which aggregates lists of k-mer counts

over a collection of samples (e.g. as in [22, 24]) in the form

of a k-mer/sample matrix with abundances as values, and 3)

Bloom filters construction, where the k-mer presence/absence

information for each sample is converted into a Bloom filter to

save space and allow fast queries.

Note that these building blocks are not specific to k-mer

indexing tools, e.g. 1) and 3) are commonly used in short-

read de novo assembly, and 2) also appears in transcriptomics

analysis [2].

Importantly, these three steps are often categorized as

“pre-processing” in k-mer indexing papers (e.g. [26, 12]) and

discounted from the running time of these indexing tools. Yet,

for a dataset like Tara Oceans, these steps dwarf the running

time of the subsequent index construction by up to several

orders of magnitude. Although construction only needs to be

done once per collection, its prohibitive running time for large

collections represents an important roadblock to the usability

of the tools.

In addition to the inefficiency of construction methods,

sequencing errors are also dealt with sub-optimally. The work

presented here is designed for indexing sequences generated

by short read technologies. Even though contemporary error

rates are low (0.1-0.5% as per [32]), the number of erroneous

bases is large in absolute terms. Thus a vast amount of read k-

mers contain sequencing errors and should be discarded during

indexing. There are many read error-correction tools [30],

that filter out k-mers solely by checking if their abundance

is below a pre-set threshold. However, they are not a viable

option for metagenomics and RNA-seq due to the presence

of low-abundance genomes and the limited availability of

reference genomes. Thus, current indexing methods have

the unsatisfactory drawbacks of being either too conservative

(discarding all low-abundant k-mers if the threshold is set too

high), or too permissive (too many erroneous k-mers are kept

if the threshold is set too low).

Here we propose an improved algorithm for this construction

step that improves both its efficiency and the ability to discard

errors. Current tools take a modular approach. They first use

an off-the-shelf k-mer counting tool separately for each sample,

and then construct a Bloom filter from the k-mers in that

sample. We observe here that this modular approach has several

drawbacks. First, it prevents fine-grain optimizations that can

be obtained by tightly integrating these steps. Second, not

all information is available during data structure construction,

such as being able to identify all the samples to which a given k-

mer belongs. As we will show, using such information improves

the removal of erroneous k-mers. In summary, by limiting

themselves to a modular approach, current tools leave both

significant speed-up and joint filtering opportunities on the

table. Given the maturity and abundance of Bloom filter-based

indexing tools, as well as a plateau in performance improvement

of k-mer counting tools [15], we believe that designing better

construction algorithms through integration is an important

research task.

From a collection of read samples, our method constructs

Bloom filters. Based on a partitioned k-mer counting procedure

carefully optimized for joint multi-sample counting, our novelty

is the combination of three methodological ingredients, and we

show that together they address the issues of long running

times and sub-optimal k-mers filtering: 1/ We introduce a

procedure for rescuing low-abundance k-mers at the heart of

the joint multi-sample k-mer counting procedure. This enables

more sensitive results yet discarding truly erroneous k-mers,

saving the prohibitive indexing of all (vastly erroneous) k-mers.

2/ We newly apply the concept of hash counting (introduced

in [27]) to the simultaneous construction of multiple Bloom

filters. We partition and sort counted hashes for direct

construction of Bloom filters indices without resorting to k-

mers, saving significant time and space. In other words k-mers

are represented by their hash value as early as possible during

the entire process. 3/ We incorporate for the first time existing

efficient matrix transposition techniques in a k-mer matrix tool,

to efficiently output Bloom filter rows directly from partitioned

intermediate data, saving intermediate disk space during joint

multi-sample counting.

The proposed method is flexible as it offers various features

depending on the user needs. Through a user-friendly pipeline,

diverse results can be proposed such as count matrices instead

of simple Bloom filters. Such matrices, represented in binary

or plain text format, show for each row a k-mer and its

abundance on each sample in columns. In addition to a set of

linearly dependent modules along with some utilities, the tool

also proposes an API for downstream developments. Rescuing

low-abundance k-mers is also optional.

In this manuscript we restrict our attention to the Bloom

filters creation pipeline using the hash counting feature and

using the rescuing of low-abundance k-mers, both in describing

the proposed method and experimenting with it. A bird-eye

view of the whole pipeline showing all its potential usages is

proposed in Supplementary materials, Section S4.

Using our workflow, we perform for the first time a massive-

scale joint k-mer counting and Bloom filter construction of a 6.5

terabase metagenomics collection, in under 50 GB of memory

and 38 hours, which is at least 3.8 times faster than the next

best alternative.

Related works

KMC [15] and DSK [28] are two disk-based k-mer counting

tools. Counting k-mers is an operation that identifies the set

of k-mers present within one (or multiple) datasets and records

the abundance of each k-mer. Intuitively, k-mers having a low

abundance (i.e. seen few times) are more likely to be the result

of one or multiple sequencing errors within reads, while k-

mers above a certain abundance threshold are more likely to

be correct. Note that neither KMC nor DSK can output Bloom

filters.

In its original publication, DSK directly stored k-mers in a

hash table by carefully controlling for memory and disk usage

using partitioning. Recent versions of KMC and DSK are based on

variants of an algorithm introduced by MSPKmerCounter [18]

subsequently made popular by KMC. Briefly, sequencing reads

are split into partitions stored on disk, then each partition

is loaded in memory and k-mers are counted within them.

Partitions are constructed in such a way that all occurrences of

a k-mer appear within a single partition, and also, overlapping

k-mers are attempted to be stored as longer sequences to avoid

redundancy. These properties are achieved using the concepts

of minimizers and super-k-mers that we will review in the

Methods section, and the concept of (k + x)-mers that we will

not use here.

kmc tools is a binary tool included in KMC 3 for

manipulation of its results files, which can perform e.g. set

operations on list of k-mers, such as intersection, union, or more

complex ones. However, to the best of our knowledge kmc tools

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

kmtricks 3

Fig. 1. kmtricks pipeline overview taking as input two samples, S1 and S2.

(1) Counting: Partitions (here, P1 and P2) over minimizers (here of length 3) are determined by sub-sampling S1 and S2 and super-k-mers (k = 5)

are then written on disk according to this partitioning. Bold red sequences are minimizers (AAA and CCC). Each partition is then counted and each

k-mer is represented by its hash value. When performing rescue, counted hashes are written on disk. Otherwise, each partition is directly represented

as a bit-vector (the ⋆ symbol indicates that step (2) is skipped).

(2) Merging: Counted hashes from equivalent partitions are aggregated and counts are binarized to produce a vector of Bloom filters (i.e. a matrix

of presence/absence bit-vectors, where row indices represent hashes). This matrix is filtered using the k-mer rescue procedure described in section 4.3.

Then, in order to build Bloom filters, i.e. having samples as matrix rows, each partition-specific sub-matrix is transposed.

(3) Bloom filter outputs: a Bloom filter is built for each sample through concatenation of transposed sub-matrices (in those, each row corresponds

to a sample). Bloom filters can be also obtained from first counting step if aggregation is not required. In this case, this corresponds to a concatenation

of bit-vectors from (1).

does not support collections of k-mer lists (i.e. k-mer matrices)

and is therefore not applicable to the work presented here.

Jellyfish [20] is an in-memory k-mer counting tool that

relies on an optimized hash table. One of its key advantages,

besides efficiency, is that as a byproduct it constructs a k-mer

dictionary: i.e. a data structure that can efficiently associate

values to k-mers and supports efficient queries. Jellyfish was

notably used to perform k-mer counting in HowDe-SBT, however

its key-value store feature was not used there. Several other

k-mer counting tools exist, and a recent benchmark [19]

highlighted the peformance of KMC3 in particular.

Simka [3] is a multi-sample k-mer counting and k-mer

matrices construction tool that was used for metagenomics. It

is based on a variation of the original DSK algorithm, modified

to run on a distributed cluster.

HowDe-SBT [12] is a k-mer indexing method for large

sequencing data collections, that extends the original concept

of Sequence Bloom Trees (SBT) [29]. Briefly, HowDe-SBT (and

in general, any SBT-based method) indexes each sample using

a Bloom filter and organizes filters inside a binary tree for

performing queries efficiently. HowDe-SBT is the most efficient

variant of SBTs to date, showing fast construction and query

times, yet requires an expensive pre-processing step. Precisely,

the pre-processing step consists in generating from a set of

samples, one Bloom filter per sample. Each Bloom filter

indexes the k-mers considered as not erroneous contained in its

corresponding set. This requires to perform a time-consuming

k-mer counting process for each data set.

BIGSI [6] and COBS [4] are k-mer indexing methods

which also use Bloom filters, however organized in a different

layout than in the SBT family. These tools represent all Bloom

filters of indexed samples in a flat manner, in a way that limits

cache misses during query. This flat structure however does not

enable to reduce redundancy between samples.

Squeakr [27] is a k-mer counting and indexing method

based on Counting Quotient filters, a data structure that

provides additional features compared to Bloom filters:

counting, resizing, deleting and merging. Related to this work,

Squeakr also counts hashes of k-mers.

MetaProFi [31] is a recent indexing scheme for k-mers

which supports both nucleotide and amino acid sequences.

MetaProFi, like kmtricks, builds a Bloom filter matrix from large

sequencing data collections. However its features are different to

kmtricks as MetaProFi does not apply any filtration on k-mers,

and so, does not require to count k-mers.

Results

kmtricks A modular pipeline and library for
manipulating k-mers from large and numerous
sequencing datasets
We propose “kmtricks” (for “kmer matrix tricks”) which is a

set of software components that together perform joint multi-

sample k-mer counting, filtering, and Bloom filter construction,

given as input many sequencing datasets (raw reads). Its

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

4 Téo Lemane et al.

aim is to efficiently construct Bloom filters for terabase-scale

collections.

A typical execution of kmtricks is presented in Fig. 1. It

shows the steps taken to transform reads into Bloom filters,

keeping in mind that more output types (e.g. k-mer matrices)

are supported (see Section S4). We highlight the following

features which differentiates kmtricks from related works:

• Joint k-mer counting allows to rescue large amounts of k-

mers that would otherwise be discarded when processing

samples independently.

• Direct counting of k-mer hash values instead of counting

k-mers saves significant time for subsequent Bloom filter

construction.

• kmtricks has been designed to be a stand-alone pipeline

(Fig. 1), yet it is composed of modular tools (described in

Figure S2) which are of independent interest: partitioning a

set of k-mers (according to their minimizer), jointly count

k-mers, construct k-mer matrices, transpose them, and

construct Bloom filters from counted k-mers.

• kmtricks also provides a C++ library for interfacing with

any stage of the pipeline, enabling for instance downstream

sequence analyses based on streaming a k-mer matrix in

row-major order.

For all presented results, the description of the data, tool

versions and command lines are provided in a companion

Github website (see reference [17]).

Scalability evaluation on RNA-seq samples
We evaluated the performance of kmtricks in terms of running

time, peak memory usage and maximal disk space on human

RNA-seq samples, while used in combination with HowDe-SBT

for constructing indexes from Bloom filters.

The main purpose of these experiments is to show the

performances of kmtricks in various settings (different modes,

different sample sizes) and compare them to the construction

of Bloom filter using a module of HowDe-SBT on k-mers counted

by Jellyfish and KMC3. Results for other related tools are

reported in Supplementary materials (Section S1), as they led

to significantly longer run times and were not used later for

large-scale experiments.

These benchmarks were done on two subsets of 100 and 674

samples from a common set of 2,585 human RNA-seqs used in

several k-mer indexing benchmarks, and first proposed in [29].

Computations were performed on the GenOuest platform on a

node with 2x10-cores Xeon E5-2660 v3 2,20 GHz with 200 GB

of memory. We used a SSD disk with 900 MB/s and 290 MB/s

sequential read/write. All benchmarks are done using 20 cores.

Results are summarized in Table 1.

On these collections, kmtricks is 1-1.5x faster than KMC3

and 5-6x faster than Jellyfish. Thus kmtricks yields superior

or comparable performance to other methods for indexing

sequencing data, even though it performs the more complex

operation of joint k-mer counting.

Using this dataset, we also validated that partitioning the

Bloom filters does not yield uneven false positive rates that

would be partition-dependent (see Supplementary Materials,

Section S3).

In the next section, we show that the performance gap

between other methods and kmtricks further widens on larger

inputs, i.e. terabyte-sized collections.

A : 100 RNA-seq (44 GB fasta.gz) Time (min) Memory (GB) Disk (GB)

Jellyfish + makebf 147 13.2 55.1

KMC 3 + makebf 33 2.9 28.4

kmtricks no rescue∗ 24 3.6 45

kmtricks 26 3.4 46

B : 674 RNA-seq (961 GB fasta.gz) Time (min) Memory (GB) Disk (GB)

Jellyfish + makebf 3543 13.2 206

KMC 3 + makebf 1958 18.7 165

kmtricks no rescue∗ 1033 24 247

kmtricks 1060 23 320
∗kmtricks no rescue: kmtricks not using rescue mode, removing k-mers seen once

Table 1. Benchmarks on two human RNA-seq datasets composed of

100 and 674 samples. Computations were done using 20 threads with

k = 20. Reported results correspond to Bloom filters construction

(including k-mer counting). Memory and Disk correspond to the

peak usage. makebf corresponds to HowDe-SBT sub-command which

build Bloom filters from counted k-mers. About index constructions

from Bloom filters, the performances are equivalent according to the

dataset. The processes took 21 and 120 minutes, respectively for the

100 and 674 datasets and both used 2.6GB of memory.

Scaling to a large sea water metagenome collection
We performed experiments on large and complex sea water

metagenomic data composed of 241 samples (distinct locations)

by the Tara Ocean project [14]. This dataset is composed of

approximately 6.5 thousand billion nucleotides, consisting of

around 266 billion distinct k-mers (k = 20), among which 174

billions distinct k-mers occur twice or more (as reported by

kmtricks).

Executions were performed on a TGCC1 node with 2x64-

cores AMD Milan@2.45GHz (AVX2) with 512 GB of memory,

on an SDD with 970 MB/s and 216 MB/s sequential read write

(average on ten tests). Jobs are limited to 72h. We did not

include other, non-bloom filter based, tools in this experiment

because we found significantly lower performances on smaller

datasets (see Supplementary Materials, Section S1).

Time (min) Memory (GB) Disk (TB)

kmtricks 1433 83.4 1.5

Jellyfish a + makebf ≈ 8071b 80.6b ≈ 0.8b

KMC3 a + makebf ≈ 5310b 100b ≈ 0.8b

aStopped after 72h computation. bExtrapolated estimation.

Table 2. Comparison of construction times between kmtricks

and other methods combining k-mer counting with Bloom filter

creation on the 6.5 terabases Tara Ocean collection using 128

threads. The makebf step corresponds to howdesbt makebf for Bloom

filter creation from counted k-mers. The Memory and Disk columns

indicate peak usage. KMC3 and Jellyfish counted each sample

independently and removed k-mers with abundance one; whereas

by default, kmtricks performed joint k-mer counting and low-

abundance rescuing (see Section 4.3) which kept some of the unit

abundance k-mers. Results for Jellyfish and KMC3 are extrapolated

as our cluster jobs are limited to 72 hours. Except some rare outliers,

the samples are of the same size. Computing time is therefore

estimated according to the number of samples processed in 72h. For

the disk usage, since Jellyfish and KMC3 do single-sample counting,

the peak disk usage corresponds to the Bloom filters size plus the

space required to count one station. COBS was not executed due to its

significantly longer construction times observed on smaller data and

Squeakr is not included either because it ended in a segmentation

fault on these samples.

1 Très Grand Centre de Calcul of CEA (http://www-hpc.cea.

fr/fr/complexe/tgcc.htm)

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

http:// www-hpc.cea.fr/fr/complexe/tgcc.htm
http:// www-hpc.cea.fr/fr/complexe/tgcc.htm

kmtricks 5

Entire presence/absence collection

matrix

(k-mers x samples)

All non-zero cells

Total from raw data 6346 billion

Expected error-free 6248 billion

Filtered cells

Expected errors 98 billion

Using the hard ab. threshold 756 billion

Using the rescue strategy 86 billion

(a) (b) (c)

Fig. 2. Collection-aware k-mer filtering recovery on Tara samples. (a) Kmer histogram of one of the Tara ocean samples (chosen arbitrarily),

showing a flat distribution of abundances indicative of the presence of low-abundance microbes, also highlighting the lack of separation between erroneous

and correct k-mers. (b) For each of the 241 Tara samples, the ”Filtering ratio” reports the number of filtered k-mers divided by the expected number of

erroneous k-mers (the closer to 1, the better). The green (resp. red) histogram shows the filtering ratios of samples using the kmtricks rescue procedure

(resp. using classical removal of k-mers occurring only once). (c) Statistics of the presence/absence matrix (k-mer x sample) for the entire Tara collection.

The ”All non-zero cells” table concerns the total number of cells in the matrix where a k-mer is present in a dataset (non-zero abundance), and the

”Filtered cells” table reports the total estimated number of erroneous k-mers inside each dataset (”Expected errors”), and the number of cells filtered

out by the absolute threshold strategy and the rescue strategy.

kmtricks enabled to construct Bloom filters for this very

large metagenomics collection in less than 24h, with similar

amount of RAM and around 3.5x to 5.5x lower computation

time than other methods (Table 2). Disk usage was 2x higher

than other tools but 4x smaller than the compressed input

data, We therefore believe that this is not a bottleneck for

users. As we will see next, kmtricks also achieves superior

results as it performs joint k-mer counting and is able to rescue

low-abundance shared k-mers.

As a side note, we additionally ran HowDe-SBT on the

Bloom Filters generated by kmtricks, thereby creating the

first complete index of all metagenomics bacterial sequences

obtained in the Tara Ocean project. With Bloom filters given

as input, HowDe-SBT ran in 1250 minutes, with a peak RAM of

165 GB. The size of the final index is 533 GB. Querying the

so created index with 10,000 metagenomic reads of size 100

requires 12 minutes and 11 GB RAM.

Collection-aware k-mer filtering recovers large
amounts of weak signal present in complex
metagenomes
k-mer filtering consists in removing from a sample any k-mer

whose number of occurrences is below a certain threshold (also

called solidity threshold), usually set to 2 or 3. However,

with data such as metagenomics or RNA-seq that have uneven

coverage and include low abundance species or expressed genes,

abundance does not enable to distinguish erroneous k-mers

from real ones, as highlighted in Fig.2(a). Hence we propose to

rescue low-abundant k-mers, through a rare but shared k-mer

rescue procedure. This procedure consists in keeping any k-mer

whose abundance is below a sample-specific threshold (called

soft-min) whenever this k-mer is sufficiently abundant in one

or several other samples. Section 4.3 provides a formalization

and an in-depth description of the procedure.

We compared an usual filtering method, i.e. discarding

the k-mers seen once (hard-min = 2), with our rescue

strategy applied on the whole k-mer spectrum (hard-min =

1). We validated this strategy as follows. For each sample we

computed

1. errth: the theoretical expected number of erroneous k-mers,

2. errone: the number of k-mers occurring only once, and

3. errunrescued: the number of k-mers that are still considered

as erroneous after our rescue procedure.

We then look at the ratio errunrescued/errth and compare it

to the ratio errone/errth that would be obtained by a classical

filtering of k-mers occurring once. The closer a ratio is to one,

the better.

The Tara Oceans dataset was mainly generated by HiSeq

2000 technology (222 samples out of 241), 8 samples were

generated by HiSeq2500, 4 samples by GAIIx. For each of

these technologies, we computed the theoretical error rate

errth. Given raw sequencing data from Acinetobacter baylyi

generated by these three sequencing technologies2 we counted

the number of erroneous k-mers (k = 20), i.e. those absent

from the reference genome. Our estimated k-mer error rates

(e.g. ratio of erroneous k-mers) are 1.27%, 9.27%, and 3.38%

for HiSeq2000, HiSeq2500 and GAIIx, respectively. As a side

note, from those ratio, one can estimate respective base error

error rates being 0.06%, 0.48%, and 0.171%, respectively.

Results shown in Fig.2(b) and (c) highlight the importance

and efficacy of our k-mer rescue procedure. Indeed, the quantity

of k-mers filtered out is close to the theoretical expected value

when using the rescue procedure (average ratio of 1.01, 86

billions k-mers filtered compared to 98 billions expected to be

filtered). Around 8-9x too many k-mers appear to be wrongly

filtered out when removing from each sample k-mers occurring

only once (756 billions k-mers filtered compared to 98 billions

expected to be filtered, and average filtering ratio of 9.12).

Thus, when indexing datasets containing low-abundant

sequences as in the Tara ocean metagenomes, k-mer rescuing

appears to be essential as it: 1. side-steps the issue of removing

low-abundant k-mers which ends up discarding an order of

magnitude too many k-mers; 2. recovers a number of k-mers

close to the expected one using co-occurrence across samples.

2 Jean-Marc Aury, Genoscope, personal communication.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

6 Téo Lemane et al.

Methods

Definitions
A minimizer of length m within a sequence s is the smallest

m-mer within s, where typically “smallest” is understood in the

lexicographical sense. A super-k-mer is a sequence in which all

constituent k-mers have the same minimizer.

A Bloom filter [5] is an approximate membership query

(AMQ) data structure that allows two operations: inserting

and querying elements u ∈ U . It is a bit array B[0..n] with

l hash functions hi : U → {0, ..., n} ∀i ∈ [1..l]. Insertion can

be defined as follows B[hi(x)] ← 1, ∀i ∈ [1..l] and lookup as∧l
i=1 B[hi(x)]. Lookups can return false positives but no false

negatives. In the following, we will consider Bloom filters with

a single hash function (l = 1).

We use the terms color-aggregative and k-mer-aggregative

as defined in [21]. A color-aggregative data structure represents

within a single index all k-mers of the collection, and each

k-mer is associated to its pattern of presence/absence across

the whole collection. Conversely, a k-mer-aggregative data

structure constructs separate k-mer indices, one per sample.

The strand of each sequenced read being unknown, in

kmtricks, as in all k-mer counting and indexing tools, each k-

mer is represented by its canonical representation: the smallest

string (e.g. in the lexicographic order) between itself and its

reverse complement.

We refer to hash counting as the process of counting hash

values of a set of elements instead of counting the elements (k-

mers) themselves. This is the counterpart of k-mer counting

except that here k-mers are converted into (non-invertible)

hash values, and several k-mers may collide to the same hash

value. Classical k-mer counters (e.g. Jellyfish, KMC) also use

hash values inside their algorithms, but always return exact

k-mers in the final results. Here ’hash counting’ goes one

step further and discards the original k-mer sequence, as it is

unnecessary for constructing Bloom filters. The key difference

between performing hash counting and directly constructing

a Bloom filter is that we record the abundances of k-mers,

which is essential for further filtering. This is akin to Count-

Min sketches [8] however we focus on the efficient construction

of an external memory representation which is not meant to

support random accesses.

Previously, Squeakr performed hash counting within

Counting Quotient filters. This method however cannot directly

be applied to efficiently construct Bloom filters, as we do in

this work by counting, partitioning and sorting hashes prior to

data structure construction. In [27], hash counting is applied to

construct each CQF at a time, later merged using Mantis [26].

In kmtricks, we directly construct multiple Bloom filters by

partitioning counted hashes, saving time.

A modular pipeline for large-scale Bloom Filters
construction: kmtricks
kmtricks supports the construction of either a k-mer matrix

or Bloom filters. In both cases, the input is a collection of

sequencing data files in FASTA/FASTQ format. The output

is either a matrix having k-mers or hashes as rows, samples

as columns, and k-mer counts as values, or a collection of

Bloom filters, one per sample. In the following, for simplifying

the reading of this manuscript, we focus on the process of

constructing Bloom filters, counting hash values instead of k-

mers. A general presentation of the whole pipeline with all its

features is proposed in Supplementary materials, Section S4.

In other tools, the construction process of Bloom filters can

typically be broken into two steps: 1) efficiently counting k-

mers then 2) inserting distinct k-mers into filters, on a per-

sample basis. kmtricks streamlines this process by realizing that

in the case of Bloom filters, only the hashes need to be counted,

not k-mers. Furthermore, in order to cope with terabytes of

input data and still be able to efficiently count hashes, a careful

partition-aware hashing scheme is designed.

Partitioning

kmtricks performs parallel k-mer counting following the

classical paradigm of partitioning k-mers based on their

minimizers and then constructing super-k-mers, as introduced

by KMC2 [15]. However, the process is newly modularized

so that intermediate tasks correspond to separate programs.

Conceptually, the set of all possible minimizers is first

partitioned in the following balanced way: all partitions should

contain a roughly equal total number of k-mers. This is

performed by the GATB library [10] that implements the same

algorithm as in DSK [28] (and KMC 2 & 3 [9]).

In order to take advantage of the partitioning scheme, we

use partitioned Bloom filters (pBFs). These are Bloom filters

that are partitioned into P sub-filters with exclusive (and

consecutive) hash spaces hp : Up → {p × s, ..., p × s + s − 1}
with p ∈ [0..P − 1] and s =

⌈
bits
P

⌉
(rounded up to a multiple of

8) with “bits” corresponding to the user-requested Bloom filter

size. pBFs allow to populate only a small part of a Bloom filter

when processing a k-mer partition, which saves memory and

enables coarse-grained parallelization at both the construction

and query stages. A classical Bloom filter can be obtained by

a simple concatenation of the pBFs thanks to the consecutive

hash spaces. This entails to adapt the query operations, see

Section 4.2.5.

Counting

This step consists in computing for each sample its super-k-

mers and writing them in their corresponding partitions on disk

(Fig 3.a). From those super-k-mers, k-mer hash values are de-

duplicated and the abundance of each distinct hash value is

determined within each partition.

kmtricks optimizes the output in the following way. If k-

mer rescue (see 3.4) is not performed, bit-vectors are output

immediately instead of a list of counted hashes (Fig 3.1.b). One

bit vector is output per partition and per sample. In other

words, these bit-vectors correspond to pBFs built from the

hashes.

Otherwise if k-mer rescue is performed, bit-vectors cannot

be immediately output as counts of the same hash value must

be examined over all samples. In this case, hashes and their

counts are dumped to disk for each partition from each sample

(Fig. 3.2.b).

Merging in k-mer rescue mode

If k-mer rescue is performed, partitions of hash values need

to undergo a merging step in order to obtain a collection of

Bloom filters. Aggregation of hashes over multiple samples

is achieved using the classical n-way merge algorithm on

equivalent partitions across samples. This algorithm assumes

sorted inputs, yet the counting step already provides a sorted

output.

The count vector of each row (corresponding to a single hash

value) is processed according to the k-mer rescue procedure,

details are given in Section 4.3. Row count vectors are

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

kmtricks 7

Fig. 3. Bloom filters construction pipeline with two samples D1 and D2 using two partitions: black (1) and gray (2). Sk and Hc denote super-k-mers

and hash counted, respectively. (1) Bloom filters pipeline without k-mer rescue: a○ Divide sample into partitioned super-k-mers. b○ Split super-

k-mers into k-mers before hashing them and counting hashes in partitions. For each partition, output presence/absence bit-vectors, i.e. partitioned

Bloom filters. c○ Concatenate equivalent partitions between samples to obtain one Bloom filter per sample. (2) Bloom filters pipeline with rare

k-mer rescue: a○ same as (1). b○ same as (1), but output hashes and their counts. c○ Merge and binarize (according to the rescue procedure, see 4.3)

equivalent partitions to build one sub-matrix per partition with pBFs in columns. d○ Transpose sub-matrices to obtain pBFs in rows. e○ same as (1)- c○.

transformed into a binary representation during the merge step.

In a partition, all possible hashes are considered. This means

that for each missing hash value (corresponding to k-mer(s) not

seen in the partition), an empty bit-vector is appended to the

matrix. Hashes are not stored (only the bit-vectors are), as they

implicitly correspond to row indices. At the end of this step,

we have P sub-matrices of
⌈
bits
P

⌉
presence/absence bit-vectors

each.

At this point, the resulting matrices are color-aggregative,

i.e. each row represents the presence or the absence of

the corresponding hash value across samples. One seeks to

convert the data into a k-mer-aggregative representation, i.e.

where each filter represents hashes for a single collection.

Switching from a color-aggregative representation to a k-mer-

aggregative representation can be achieved through a bit-

matrix transposition. The matrices are additionally sorted so

that each bit-vector row corresponds to consecutive hashes in

{p× s, . . . , p× s + s− 1}.
When performing a transposition, we transform a matrix

with hashes in rows associated with presence/absence bit-

vectors into a matrix with samples in rows associated with a

one-hash pBF. Due to Bloom filter partitioning, P transposed

matrices are in fact obtained, each with a number of rows

corresponding to the number of samples. The horizontal

concatenation of each corresponding row from these matrices

allows one to build one Bloom filter per sample.

Outputs

kmtricks can produce different outputs as described in

Figure S2. In the context of Bloom filter construction, it

produces hashes presence/absence vectors (kmer-aggregative)

or pBFs vectors (color-aggregative) both seen as bit matrices.

Subsequently, pBFs vectors can be converted into sample-

specific Bloom filters that are compatible with the SDSL

library [11] and HowDe-SBT.

Query

Bloom filters can be queried in the usual way, apart from

a small technicality: kmtricks creates Bloom filters that are

partitioned according to minimizers. The minimizer of each

k-mer from a query sequence must be computed in order

select the correct hash function. To facilitate the queries, we

propose an HowDe-SBT wrapper compatible with our hashing

scheme, through the kmtricks query command. The kmtricks

C++ library can additionally be used for directly querying the

Bloom filters in the correct manner.

A novel technique to rescue rare k-mers
To rescue low-abundant but likely correct k-mers, as performed

in Section 3.4, we design a rather simple technique based

on examining the abundance of each k-mer across sequencing

samples. This technique is only practically applicable in

conjunction with joint k-mer counting. It cannot be directly

implemented in a one-sample-at-a-time construction procedure,

unless such procedure discards no k-mer which would result in

prohibitively large intermediate storage. When a low-abundant

k-mer is observed in a sample (with abundance lower than a

user-defined threshold), its abundance in other samples is used

to decide whether to keep its abundance for that sample or not.

In each sample i, two thresholds are used: k-mers whose

abundance is below a first threshold called hard-mini are simply

discarded from sample i during the counting step. Such k-mers

cannot be rescued latter. Among remaining k-mers, those whose

abundance is higher than or equal to a second threshold called

soft-mini (with soft-mini ≥ hard-mini) are said to be “solid”

and are conserved during the merge step. Finally a k-mer whose

abundance in sample i is in [hard-mini, soft-mini[is conserved

only if there exists at least share-min other samples in which

this k-mer is solid. The parameter share-min is user-defined and

is independent from the considered sample.

The thresholds hard-mini and soft-mini are user-defined and

can be set independently for each sample i, or a unique value

can be set to all samples. To facilitate usage, soft-mini can be

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

8 Téo Lemane et al.

automatically determined with respect to the total number of

k-mers in set i. In this case soft-mini is the smallest value ≥ 1

such that the number of k-mers occurring soft-mini is smaller

than a user-defined percentage of the total number of k-mers.

Figure 4 presents several examples showing the application

of those thresholds.

Counted hashes Post filtration result

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

soft-min 3 2 2 3 2

h1 2 0 2 5 2 1 0 1 1 1

h2 4 1 6 2 0 1 0 1 0 0

Fig. 4. Rescue procedure example for two hash values (h1 and h2) and

five samples (D1 to D5 using sample-specific soft-min and the following set

of parameters: hard-min=1 (for all samples), and share-min=3. The strikeout

values are lower than hard-min, underlined values are higher or equal

to soft-min in their sample (solid k-mer). Other values can be rescued.

Among them the value shown in green is rescued, as h1 has a abundance

lower than 3 in D1 but it is solid in at least share-min other samples (D3,

D4, D5). Values shown in red are not rescued as h2 is solid only in 2

samples.

Discussion

We propose kmtricks, a novel method for efficiently counting k-

mers across multiple samples and for generating Bloom filters.

In addition to being the fastest method for generating Bloom

filters over terabyte-scale collections, our approach kmtricks

proposes a novel mechanism to filter erroneous k-mers using

their co-occurrence across samples, i.e. going beyond filtering

on a per-sample basis. This approach leads to significantly

improved recovery of k-mers in metagenomes. kmtricks is

flexible as, in addition to this adjustable possibility for subtle

k-mer filtration, it offers diverse usage scenario: Bloom filters

creation, k-mer matrices and various operations on each

module output. The scope of kmtricks is therefore Bloom filter

construction, k-mer matrix construction, but it is not a drop-in

replacement for k-mer counting tools.

In our tests on relatively small collections (100-674 RNA-

seq datasets, with on average hundreds of millions of distinct

k-mers per sample) the performance of kmtricks is roughly

equivalent to the state of the art KMC 3 k-mer counter combined

with the Bloom filters construction procedure of HowDe-SBT.

However kmtricks stands out on larger collections having higher

number of k-mers per sample, such as Tara Ocean (> 6 TB of

sequences, with several billions of distinct k-mers per sample).

For those, Bloom filter construction becomes a bottleneck and

highlights the superior efficiency of the streamlined kmtricks

pipeline.

At a high level, kmtricks is able to output matrices either

in column-major order or in row-major order, where rows can

either be k-mers or hash values. This flexibility allows kmtricks

to provide inputs for both families of indexing data structures

(k-mer-aggregative and color-aggregative, as defined in [21]

and recalled in the Methods section). Row-major order makes

the presence/absence of a k-mer directly accessible across all

samples, and is contiguous in memory. In column-major order,

each Bloom filter is independent and provides information

about the existence of all k-mers in one sample.

kmtricks uses a particular hash function on k-mers that

partitions the hash space by minimizers. We experimentally

validated that this scheme does not introduce more false

positives than a classical Bloom filter.

Contemporary of kmtricks, MetaGraph [13] has been very

recently proposed as an exact k-mer membership indexing

scheme (i.e. not using Bloom filters). MetaGraph has been

applied to collections of hundreds of terabases using cloud

resources. Its preprocessing step is KMC 3, and it does not

perform k-mer rescue. Therefore its features are different to

kmtricks, yet we added a performance comparison in Table 1.

Ideally, kmtricks could be integrated within a MetaGraph-like

approach to combine single-server efficiency and k-mer rescue

within a cloud architecture.

Competing interests

No competing interest is declared.

Author contributions statement

R.C., P.P. and T.L. have conceptualized the project. T.L.,

P.M., R.C. and P.P. developed the methodology. T.L. and P.P.

implemented the software. T.L., R.C. and P.P. conceived the

experiments, T.L. and P.P. conducted the experiments, T.L.

and P.P. analysed the results. T.L., P.M., R.C. and P.P. wrote

and reviewed the manuscript.

Acknowledgments

This work used HPC resources from the TGCC of CEA

and the GenOuest bioinformatics core facility (https://www.

genouest.org). The authors are grateful to Bob Harris for

discussion on HowDe-SBT, and Eric Pelletier & Jean-Marc Aury

who provided links to Tara and Acinetobacter datasets, and

precious information about these data.

References

1. Stephen F Altschul, Warren Gish, Webb Miller, Eugene W

Myers, and David J Lipman. Basic local alignment search

tool. Journal of molecular biology, 215(3):403–410, 1990.

2. Jérôme Audoux, Nicolas Philippe, Rayan Chikhi, Mikaël

Salson, Mélina Gallopin, Marc Gabriel, Jérémy Le Coz,

Emilie Drouineau, Thérèse Commes, and Daniel Gautheret.

De-kupl: exhaustive capture of biological variation in rna-

seq data through k-mer decomposition. Genome biology,

18(1):243, 2017.

3. Gaëtan Benoit, Pierre Peterlongo, Mahendra Mariadassou,

Erwan Drezen, Sophie Schbath, Dominique Lavenier, and

Claire Lemaitre. Multiple comparative metagenomics

using multiset k-mer counting. PeerJ Computer Science,

2016(11):e94, nov 2016.

4. Timo Bingmann, Phelim Bradley, Florian Gauger, and

Zamin Iqbal. COBS: a Compact Bit-Sliced Signature Index.

Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 11811 LNCS:285–303, may 2019.

5. Burton H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,

13(7):422–426, 1970.

6. Phelim Bradley, Henk C. den Bakker, Eduardo P.C.

Rocha, Gil McVean, and Zamin Iqbal. Ultrafast search

of all deposited bacterial and viral genomic data. Nature

Biotechnology, 37(2):152–159, feb 2019.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

https://www.genouest.org
https://www.genouest.org

kmtricks 9

7. Benjamin Buchfink, Chao Xie, and Daniel H Huson. Fast

and sensitive protein alignment using diamond. Nature

methods, 12(1):59–60, 2015.

8. Graham Cormode and Shan Muthukrishnan. An improved

data stream summary: the count-min sketch and its

applications. Journal of Algorithms, 55(1):58–75, 2005.

9. Sebastian Deorowicz, Marek Kokot, Szymon Grabowski,

and Agnieszka Debudaj-Grabysz. KMC 2: Fast

and resource-frugal k-mer counting. Bioinformatics,

31(10):1569–1576, may 2015.

10. Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles

Deltel, Claire Lemaitre, Pierre Peterlongo, and Dominique

Lavenier. GATB: Genome Assembly & Analysis Tool Box.

Bioinformatics (Oxford, England), 30(20):2959–2961, oct

2014.

11. Simon Gog, Timo Beller, Alistair Moffat, and Matthias

Petri. From theory to practice: Plug and play with succinct

data structures. In 13th International Symposium on

Experimental Algorithms, (SEA 2014), pages 326–337,

2014.

12. Robert S Harris and Paul Medvedev. Improved

representation of sequence Bloom trees. Bioinformatics,

2019.

13. Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc

Zimmermann, Christopher Barber, Gunnar Rätsch, and

André Kahles. MetaGraph: Indexing and Analysing

Nucleotide Archives at Petabase-scale. bioRxiv, page

2020.10.01.322164, nov 2020.

14. Eric Karsenti, Silvia G Acinas, Peer Bork, Chris Bowler,

Colomban De Vargas, Jeroen Raes, Matthew Sullivan,

Detlev Arendt, Francesca Benzoni, Jean-Michel Claverie,

et al. A holistic approach to marine eco-systems biology.

PLoS biol, 9(10):e1001177, 2011.

15. Marek Kokot, Maciej Dlugosz, and Sebastian Deorowicz.

KMC 3: counting and manipulating k-mer statistics.

Bioinformatics (Oxford, England), 33(17):2759–2761, sep

2017.

16. Tuuli Lappalainen, Michael Sammeth, Marc R Friedländer,

Peter Ac‘t Hoen, Jean Monlong, Manuel A Rivas,

Mar Gonzalez-Porta, Natalja Kurbatova, Thasso Griebel,

Pedro G Ferreira, et al. Transcriptome and genome

sequencing uncovers functional variation in humans.

Nature, 501(7468):506–511, 2013.

17. Téo Lemane and Pierre Peterlongo. https://github.com/

pierrepeterlongo/kmtricks_benchmarks, 2022.

18. Yang Li et al. Mspkmercounter: a fast and memory

efficient approach for k-mer counting. arXiv preprint

arXiv:1505.06550, 2015.

19. Swati C Manekar and Shailesh R Sathe. A benchmark study

of k-mer counting methods for high-throughput sequencing.

GigaScience, 7(12):giy125, 2018.

20. Guillaume Marçais and Carl Kingsford. A fast, lock-free

approach for efficient parallel counting of occurrences of k-

mers. Bioinformatics, 27(6):764–770, mar 2011.

21. Camille Marchet, Christina Boucher, Simon J. Puglisi,

Paul Medvedev, Mikaël Salson, and Rayan Chikhi. Data

structures based on k-mers for querying large collections of

sequencing data sets. Genome Research, 31(1):1–12, jan

2021.

22. Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël

Salson, and Rayan Chikhi. Reindeer: efficient indexing

of k-mer presence and abundance in sequencing datasets.

bioRxiv, 2020.

23. Christopher Mason, Ebrahim Afshinnekoo, Sofia

Ahsannudin, Elodie Ghedin, Timothy Read, Claire

Fraser, Joel Dudley, Mark Hernandez, Christopher

Bowler, Gustavo Stolovitzky, Ariel Chernonetz, Andrew

Gray, Aaron Darling, Catherine Burke, Pawe l P Labaj,

Alexandra Graf, Houtan Noushmehr, s. Moraes, Emmanuel

Dias-Neto, Juan Ugalde, Yongli Guo, Yiming Zhou,

Zhi Xie, Daisy Zheng, Hongwei Zhou, Leming Shi,

Sibo Zhu, Anyi Tang, Tomislav Ivanković, Rania Siam,

Nicolas Rascovan, Hugues Richard, Ingrid Lafontaine,

Colin Baron, Narasimha Nedunuri, Bharath Prithiviraj,

Sikander Hyat, Shaadi Mehr, Kambiz Banihashemi, Nicola

Segata, Haruo Suzuki, Celia M Alpuche Aranda, Jesus

Martinez, Ayokunle Christopher Dada, Olayinka Osuolale,

Folarin Oguntoyinbo, Marius Dybwad, Manuela Oliveira,

Andreia Fernandes, Manuela Oliveira, Andreia Fernandes,

Aspassia D Chatziefthimiou, Salama Chaker, Dmitry

Alexeev, Dmitry Chuvelev, Alex Kurilshikov, Stephan

Schuster, Geoffrey H Siwo, Soojin Jang, Sung Chul Seo,

Sung Ho Hwang, Stephan Ossowski, Daniela Bezdan, Klas

Udekwu, Klas Udekwu, Per O Lungjdahl, Olga Nikolayeva,

Ugur Sezerman, Frank Kelly, Sarah Metrustry, Eran Elhaik,

Gaston Gonnet, Lynn Schriml, Emmanuel Mongodin,

Curtis Huttenhower, Jack Gilbert, Mark Hernandez, Elena

Vayndorf, Martin Blaser, Eric Schadt, Jonathan Eisen,

Christopher Beitel, David Hirschberg, Lynn Schriml,

Emmanuel Mongodin, and The MetaSUB International

Consortium. The Metagenomics and Metadesign of the

Subways and Urban Biomes (MetaSUB) International

Consortium inaugural meeting report. Microbiome,

4(1):24, 2016.

24. Martin D Muggli, Bahar Alipanahi, and Christina Boucher.

Building large updatable colored de bruijn graphs via

merging. Bioinformatics, 35(14):i51–i60, 2019.

25. Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov,

and Pavel A. Pevzner. MetaSPAdes: A new versatile

metagenomic assembler. Genome Research, 27(5):824–834,

may 2017.

26. Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender,

Michael Ferdman, Rob Johnson, and Rob Patro. Mantis: A

Fast, Small, and Exact Large-Scale Sequence-Search Index.

Cell Systems, 7(2):201–207.e4, aug 2018.

27. Prashant Pandey, Michael A Bender, Rob Johnson, and

Rob Patro. Squeakr: an exact and approximate k-mer

counting system. Bioinformatics, 34(4):568–575, 2018.

28. G. Rizk, D. Lavenier, and R. Chikhi. DSK: k-mer counting

with very low memory usage. Bioinformatics, 29(5):652–

653, mar 2013.

29. Brad Solomon and Carl Kingsford. Fast search of

thousands of short-read sequencing experiments. Nature

Biotechnology, 34(3):300–302, mar 2016.

30. Li Song and Liliana Florea. Rcorrector: efficient

and accurate error correction for illumina rna-seq reads.

GigaScience, 4(1):s13742–015, 2015.

31. Sanjay K. Srikakulam, Sebastian Keller, Fawaz Dabbaghie,

Robert Bals, and Olga V. Kalinina. MetaProFi: A protein-

based Bloom filter for storing and querying sequence data

for accurate identification of functionally relevant genetic

variants. bioRxiv, page 2021.08.12.456081, aug 2021.

32. Nicholas Stoler and Anton Nekrutenko. Sequencing error

profiles of illumina sequencing instruments. NAR genomics

and bioinformatics, 3(1):lqab019, 2021.

33. Clare Turnbull, Richard H Scott, Ellen Thomas, Louise

Jones, Nirupa Murugaesu, Freya Boardman Pretty, Dina

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

https://github.com/pierrepeterlongo/kmtricks_benchmarks
https://github.com/pierrepeterlongo/kmtricks_benchmarks

10 Téo Lemane et al.

Halai, Emma Baple, Clare Craig, Angela Hamblin, et al.

The 100 000 genomes project: bringing whole genome

sequencing to the nhs. Bmj, 361, 2018.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

kmtricks 1

Supplementary

Human RNA-seq benchmarks

This section present an extensive version of the Table 1 (Section

3.2) with additional comparisons against non-Bloom filter based

tools. Tool versions are shown in Table S4. Details about data

and scripts are available from the kmtricks github companion

website (see reference [17]). A Conda environment is also

provided to reproduce these benchmarks.

kmer counter (& bf creation) Index Time (min) Memory (GB) Disk (GB)

A : 100 RNA-seq (44 GB fasta.gz)

Jellyfish (& makebf) HowDe-SBT 147 + 21 13.2 — 2.6 55.1

KMC 3 (& makebf) HowDe-SBT 33 + 21 2.9 — 2.6 28.4

McCortex k = 31 COBS 256 + 67 27 — 1.5 327

Squeakr Mantis 64 + 24 3.6 — 27.8 25.8

kmtricks HowDe-SBT 24 + 21 3.6 — 2.6 45

kmtricks R HowDe-SBT 26 + 21 3.4 — 2.6 46

kmtricks R k = 31 HowDe-SBT 20 + 21 3.6 — 2.6 50

B : 674 RNA-seq (961 GB fasta.gz)

Jellyfish (& makebf) ∅ 3543 13.2 206

KMC 3 (& makebf) ∅ 1958 18.7 165

KMC 3 Metagraph 561 + 973 18.7 — 21.9 96.3

kmtricks ∅ 1033 24 247

kmtricks R HowDe-SBT 1060 + 120 23 — 2.4 320

kmtricks R: kmtricks using rescue mode

Table S1. Benchmarks on two human RNA-seq datasets composed

of 100 and 674 samples. Computations were done using 20 threads

with k = 20. However as COBS supports only McCortex-file for k = 31,

we also propose results for kmtricks + HowDe-SBT using k = 31.

For Time and Memory, when two values are provided in a cell,

the first corresponds to the pre-processing time (k-mer counting

and possibly Bloom filter creation) and the second to the index

construction. Memory and Disk correspond to the peak usage. Disk

usage corresponds to the total required space to build the index,

including temporary files, Bloom filters and the final index. For

McCortex-COBS, the disk usage corresponds mainly to the ctx files

from McCortex.

Results not including the index creation

As shown Table ±S1, on the smaller dataset (100 RNA-seq,

44 GB fasta.gz), kmtricks outperformed Jellyfish used in

combination with makebf, McCortex and Squeaker in term of

computing time (by 2.6-10x) and memory usage (by 1-3.9x)

and use comparable disk space. We also substituted Jellyfish

with KMC3 in HowDe-SBT, yielding comparable time/memory

performance to kmtricks on this collection. In terms of k-mer

counting alone, KMC3 is 1.8x faster with similar memory usage,

however KMC3 does not create Bloom filters from counted k-

mers, and does not support joint k-mer counting and so can

not provide a similar k-mer rescue procedure. Its integration in

a Bloom filter construction pipeline turns out to be significantly

less scalable than kmtricks as shown Section 3.3, dealing with

larger and more complex data.

One the larger dataset (674 RNA-seq 961 GB fasta.gz),

similar conclusions hold, kmtricks remaining the fastest tool

to provide Bloom filters from raw read files (1.8-3.3x faster).

Results including the index creation

We used HowDe-SBT from Bloom filters and COBS and Mantis from

counted k-mers for constructing final indexes. Except for COBS

which is significantly longer than other tools (3.2 times longer

than HowDe-SBT) performances are equivalent.

Even if it is currently not published, we also tested

Metagraph (https://github.com/ratschlab/metagraph) on the

largest dataset and using KMC3 as prepossessing step. Compared

to HowDe-SBT using kmtricks as a prepossessing step, and

including the rescue mode, KMC3 +Metragraph uses 3.3 times

less disk, and is 1.3 times slower, while using slightly less RAM

(21.9 GB versus 23 GB).

k-mer matrix construction

In this manuscript, we focused on the Boom filters construction.

However, kmtricks is able to build different type of matrices

like abundance or presence/absence matrices. In the table S2,

we present a quick comparison between Bloom and abundance

matrix construction. Since these two modes share a part of

their algorithms, their performances are often close in terms

of computing cost. This can of course differ depending on the

parameters such as very large Bloom filter size for instance.

Moreover, in Bloom mode, the fixed size of hashes allows us to

use a more efficient compression algorithm, in both time and

space, resulting in a less-intensive IO usage.

100 RNA-seq (44 GB fasta.gz)

Time (min) Memory (GB) Disk (GB)

kmtricks Bloom 26 3.4 46

kmtricks k-mer 29 2.8 54

Table S2. Comparison of k-mer matrix and Bloom filter matrix

construction on 100 RNA-seq samples. Computations were done

using 20 threads and k = 20.

k-mer counting

Although kmtricks is not a drop-in replacement for k-mer

counters, we compared it with Jellyfish and KMC3 on 100 RNA-

seq samples. The results are presented in the table S3. As shown

in the table, kmtricks is faster than Jellyfish but it should be

noted that the outputs are different since Jellyfish produces a

hash table. For the comparison with KMC3, the performances are

close because kmtricks is adapted to multi-sample counting. For

single-sample counting, a k-mer counter like KMC3 is probably

more adapted and efficient.

100 RNA-seq (44 GB fasta.gz)

Time (min) Memory (GB) Disk (GB)

kmtricks 26 2.2 48

Jellyfish 51 6.2 49

KMC3 24 2.9 29.8

Table S3. Comparison of k-mer counting on 1 and 100 RNA-seq

samples. Computations were done using 20 threads and k = 20.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

https://github.com/ratschlab/metagraph

2 Téo Lemane et al.

Tool versions

Tool Version or git sha1

HowDe-SBT 2.00.02

Jellyfish 2.3.0

KMC 3.1.1

McCortex 1.0.1

COBS 1915fc0

Squeakr 0.6

Mantis 0.2.0

Metagraph 0.1.0

kmtricks 1.1.1

Table S4. Tool versions.

Empirical analysis of pBFs false positive rate

Since kmtricks Bloom filters are partitioned (pBFs), a potential

drawback is that the partition repartition is uneven and that

false positive rate is partition-dependant. We checked the false

positive rate of each partition and performed the following

experiment: given a pBF of total size s, we compared for

each of its partitions the actual false positive rate versus the

false positive rate that would be obtained by a non-partitioned

Bloom filter of size s (called the theoretical false positive rate).

We computed the partition-dependent false positive rate (using

300 partitions) for a dataset with 100 human RNA-seq samples.

Results shown in Fig. S1 give the false positive rate dispersion

across partitions for 15 samples compared to the theoretical

false positive rate of these 15 samples. Results on the remaining

85 samples are similar. Command lines and full results are

available at github.com/pierrepeterlongo/kmtricks_benchmarks.

Despite some outliers, partition-dependent false positive rates

remain close to the theoretical values.

As the partitioning scheme is the same for all samples of a

dataset, it is theoretically possible for some experiments (very

heterogeneous for instance) and some samples that the false

positive rate variation across the partitions is more important

than what we observe here. For allowing query-time correction

of this effect, kmtricks provides as an output the false positive

rate of each partition for each sample.

Fig. S1. Partition-dependant pBF false positive rate. Given 15 human

RNA-seq samples, the distribution of false positive rates across partitions

is shown as well as the theoretical false positive rate, obtained with no

partitioning.

kmtricks modules

kmtricks tool suite is composed of a set of linearly dependent

modules along with some utilities and API allowing k-

mer/hash/bf matrices construction. As described in Figure S2,

each module corresponds to one step of the kmtricks pipeline

but some can have different inputs/outputs depending on the

chosen output mode (k-mer or hash counting, with or without

k-mer rescue, etc. . .).

Additional modules are provided to exploit kmtricks’s files:

1) kmtricks dump, allowing to convert individual files in human

readable format. 2) kmtricks aggregate, allowing to aggregated

consistent files, e.g. all count sub-matrices or all counted

partitions of one sample. In the same spirit, an API provides

sequential reading of kmtricks’s files allowing for instance

parallel streaming of k-mer matrices from counted k-mer

partitions.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

github.com/pierrepeterlongo/kmtricks_benchmarks

kmtricks 3

Fig. S2. kmtricks modules overview. The different possible paths in kmtricks’s pipeline are represented by a diagram of modules (boxes) annotated with

their intermediate outputs (italics). Many of the intermediate outputs are readable by the kmtricks API, and tools are also available for basic operations

such as dump or aggregate. The two dotted lines show the pipeline described in the paper, i.e. Bloom filters construction with (blue) and without (red)

k-mer rescue.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbac029/6576015 by IN
R

IA R
ennes user on 06 M

ay 2022

	Introduction
	Related works

	Results
	kmtricks A modular pipeline and library for manipulating k-mers from large and numerous sequencing datasets
	Scalability evaluation on RNA-seq samples
	Scaling to a large sea water metagenome collection
	Collection-aware k-mer filtering recovers large amounts of weak signal present in complex metagenomes

	Methods
	Definitions
	A modular pipeline for large-scale Bloom Filters construction: kmtricks
	Partitioning
	Counting
	Merging in k-mer rescue mode
	Outputs
	Query

	A novel technique to rescue rare k-mers

	Discussion
	Competing interests
	Author contributions statement
	Acknowledgments
	Human RNA-seq benchmarks
	Results not including the index creation
	Results including the index creation
	k-mer matrix construction
	k-mer counting

	Tool versions
	Empirical analysis of pBFs false positive rate
	kmtricks modules

