kmtricks: creating bloom filters for indexing large sequencing data collections

Téo Lemane¹ Paul Medvedev^{2, 3, 4} Rayan Chikhi⁵ Pierre Peterlongo¹

¹Univ. Rennes, Inria, CNRS, Rennes, France
 ²Department of Computational Biology, Institut Pasteur, Paris, France
 ³Department of Computer Science and Engineering, The Pennsylvania State University, USA
 ⁴Department of Biology, The Pennsylvania State University, USA
 ⁵Huck Institutes of the Life Sciences, The Pennsylvania State University, USA

6th july 2022

K. Katz et al., 2022

- Tara Ocean Project: 250 billions metaG reads
- 100,000 Genome Project: 20 PB
- SRA: 🚀

Indexing motivations

Ocean Gene Atlas

https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/

Téo Lemane

 $^{^{1}}$ B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments. Nature Biotechnology, 2016.

 $^{^{2}}$ Y. Yu, et al. Seqothello: querying rna-seq experiments at scale. Genome Biology, 2018.

 $^{^3}$ N .Luhmann, et al. Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs. Genome Biology, 2021.

⁴R. Wittler. Alignment-and reference-free phylogenomics with colored de Bruijn graphs. Algorithms for Molecular Biology, 2020. + 🛬 + 🛬 + 🛬 - 🤌 🔍

Indexing motivations

Ocean Gene Atlas

https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/

And others:

- RNA-Seq
 - Expressed isoform according to tissues¹
 - Gene fusion²
- Microbial genomics
 - Antimicrobial resistance³
- Genome dynamics
 - Phylogeny⁴
- ...

Téo Lemane

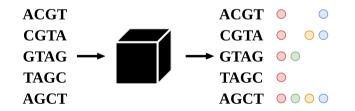
¹B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments. Nature Biotechnology, 2016.

 $^{^{2}}$ Y. Yu, et al. Seqothello: querying rna-seq experiments at scale. Genome Biology, 2018.

 $^{^3}$ N .Luhmann, et al. Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs. Genome Biology, 2021.

⁴R. Wittler. Alignment-and reference-free phylogenomics with colored de Bruijn graphs. Algorithms for Molecular Biology, 2020. + 🛬 + 🛬 + 🛬 🖉

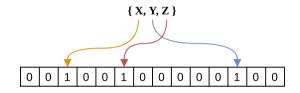
Given an experiments set, and a sequence of interest, which sample contains this sequence ?


Given an experiments set, and a sequence of interest, which sample contains this sequence ? In terms of k-mers:

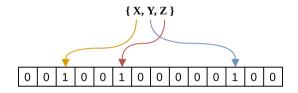
• A query Q matches a sample S if at least a fraction θ of Q's k-mers are present in S.

Given an experiments set, and a sequence of interest, which sample contains this sequence ? In terms of k-mers:

• A query Q matches a sample S if at least a fraction θ of Q's k-mers are present in S.

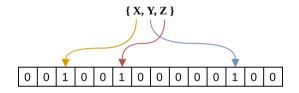

k-mer indexing & Bloom filters

- BFT (Holley et al., 2016)
- Sequence Bloom Tree
 - SBT (Solomon & Kingsford, 2016)
 - AllSomeSBT (Sun et al., 2017)
 - SSBT (Solomon & Kingsford, 2018)
 - HowDeSBT (Harris & Medvedev, 2019)
- Mantis (Pandey et al., 2018)
- SeqOthello (Yu et al., 2018)
- BIGSI (Bradley *et al.*, 2019)
- COBS (Bingmann et al., 2019)
- REINDEER (Marchet et al., 2020)
- Metagraph (Karasikov et al., 2021)


Review of *k*-mer indexing:

Data structure based on k-mers for querying large collections of sequencing datasets (Marchet *et al.*, 2019)

JOBIM 2022



▲□▶ < 클▶ < 클▶ < 클▶</p>
JOBIM 2022

Construction

- Count k-mers
- For each k-mer: compute hashes and set corresponding bits

Construction

- Count k-mers
- For each k-mer: compute hashes and set corresponding bits

Issues

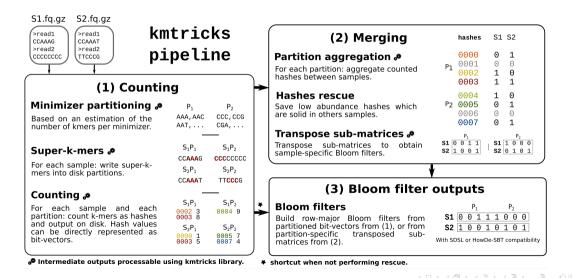
- k-mer counting is a huge bottleneck
- Bad data locality

Téo Lema<u>ne</u>

kmtricks: Bloom filters matrix construction

S1	S2	S3	S4	S5	S6	S7	S8	S9	 Sn
0	1	1	0	0	1	1	1	1	 1
0	1	1	1	1	1	0	0	1	 0
0	1	1	1	1	1	0	0	0	 0
1	0	0	1	1	0	1	1	1	 1
1	0	1	0	0	1	0	0	1	 0
0	0	1	0	0	1	1	0	0	 0
0	1	0	0	1	1	1	1	1	 1
0	0	0	0	1	0	1	1	1	 0
1	1	1	0	1	1	0	0	1	 0
1	1	0	0	1	0	0	1	0	 0
1	1	0	1	1	1	1	1	0	 0
0	0	0	1	1	0	1	0	0	 0

JOBIM 2022

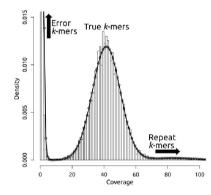

kmtricks: Bloom filters matrix construction

	S1	S2	S3	S4	S5	S6	S7	S8	S9	 Sn
	0	1	1	0	0	1	1	1	1	 1
Ρ1	0	1	1	1	1	1	0	0	1	 0
PI	0	1	1	1	1	1	0	0	0	 0
										 0
	1	0	0	1	1	0	1	1	1	 1
P2	1	0	1	0	0	1	0	0	1	 0
12	0	0	1	0	0	1	1	0	0	 0
										 1
	0	1	0	0	1	1	1	1	1	 1
Pn	0	0	0	0	1	0	1	1	1	 0
FII	1	1	1	0	1	1	0	0	1	 0
	1									

ヘロト 不同 ト 不同 ト 不同 トー 3

0 0

kmtricks: Bloom filters matrix construction

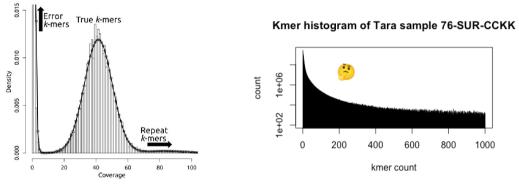

Téo Lemane

kmtricks

JOBIM 2022

k-mer filtering

Hard abundance threshold vs kmtricks rescue strategy



Téo Lemane

JOBIM 2022

k-mer filtering

Hard abundance threshold vs kmtricks rescue strategy

D. Laehnemann et al., 2015

The holistic view of k-mers abundances across samples allows custom errors screening

					Post filtration result					
		D1 D2 D3 D4 D5				D1	D2	D3	D4	D5
ab. threshold	3	2	2	3	2					
k1	2	θ	2	<u>5</u>	2	1	0	1	1	1
k2	<u>4</u>	0 1	<u>6</u>	2	θ	1	0	1	0	0
hard-min=1. share-min=3										

JOBIM 2022

Application on Tara Ocean bacterial metagenome - Index

241 sampling stations

- 712 short read samples, +6TB of compressed data
- 266 billions of distinct k-mers

Application on Tara Ocean bacterial metagenome - Index

241 sampling stations

- 712 short read samples, +6TB of compressed data
- 266 billions of distinct k-mers

Benchmark environment

- 128 threads
- 970 MB/s and 216 MB/s sequential read/write

	Time (min)	Memory (GB)	Disk (TB)				
kmtricks	1433	83.4	1.5				
$Jellyfish^a + \mathtt{makebf}$	$\approx 8071^{b}$	80.6 ^b	$\approx 0.8^{b}$				
KMC3 ^a + makebf	$\approx 5310^{b}$	100 ^b	$\approx 0.8^{b}$				
^a Stopped after 72h computation. ^b Extrapolated estimation.							

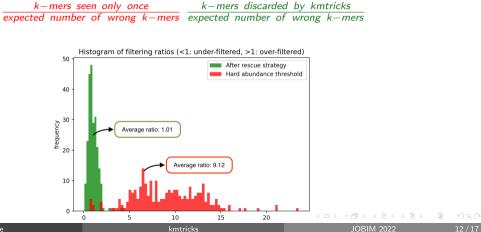
Leman

JOBIM 2022

Application on Tara Ocean bacterial metagenome - Filtering

Hard abundance threshold vs kmtricks rescue strategy

 For each sample, we know the error rate of the sequencer used thanks to the Genoscope benchmarks.

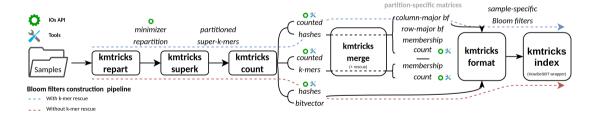

<u>k-mers seen only once</u> <u>expected number of wrong k-mers</u> <u>k-mers discarded by kmtricks</u> <u>expected number of wrong k-mers</u>

Application on Tara Ocean bacterial metagenome - Filtering

Hard abundance threshold vs kmtricks rescue strategy

Téo Lemane

 For each sample, we know the error rate of the sequencer used thanks to the Genoscope benchmarks.


kmtricks: a k-mer matrix toolbox

CLI

- **pipeline**: end-to-end matrix construction
- modules: step-by-step matrix construction
- tools: work with kmtricks outputs

C++ API and plugin support

- I/O
- Matrix streaming
- Extend features, e.g. matrix filtering

O https://github.com/tlemane/kmtricks

Téo	

JOBIM 2022

Example of application: Differential k-mer analysis

kmdiff: large-scale and user-friendly differential kmer analyses

	C	ontr	ol		9	
	1	2	3	4	5	6
k0	2	1	3	2	3	1
k1	3	8	9	1	0	2
k2	7	5	8	0	0	0
k3	4	4	6	3	7	5
k4	2	0	6	8	9	9
kn	6	4	8	2	2	3

 Uses kmtricks streaming features along with a state-of-the-art statistical model¹ to find differentially represented k-mers between two cohorts

¹A. Rahman et al., "Association mapping from sequencing reads using k-mers", 2018

Example of application: Differential k-mer analysis

kmdiff: large-scale and user-friendly differential kmer analyses

	C	ontr	ol		9	
	1	2	3	4	5	6
k0	2	1	3	2	3	1
k1	3	8	9	1	0	2
k2	7	5	8	0	0	0
k3	4	4	6	3	7	5
k4	2	0	6	8	9	9
kn	6	4	8	2	2	3

- Uses kmtricks streaming features along with a state-of-the-art statistical model¹ to find differentially represented k-mers between two cohorts
- 40vs40 human Illumina WGS (+3TB gz)
 9h, 11GB ram (vs 138h, 85GB ram)¹
- Applications
 - GWAS on non-model species

O https://github.com/tlemane/kmdiff

¹A. Rahman et al., "Association mapping from sequencing reads using k-mers", 2018

Conclusion

- Efficient and flexible Bloom/k-mer matrix toolbox
- Supports medium/large datasets like Tara Ocean
- Comes with a set of utilities/API/plugins for downstream analysis
- Obviously, still very insufficient to hope to scale up on very large databases like SRA

Future work:

- Characterization of rare rescued k-mers
- Take advantage of the partitioned structure of Bloom filters for a more efficient construction/query of the HowDeSBT tree

Now available in Bioinformatics Advances: T. Lemane, P. Medvedev, R. Chikhi, P. Peterlongo, "kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections", Bioinformatics Advances, 2022