
Sequence analysis

The K-mer File Format: a standardized and compact disk

representation of sets of k-mers

Yoann Dufresne 1,*, Teo Lemane 2, Pierre Marijon3, Pierre Peterlongo 2,

Amatur Rahman4, Marek Kokot5, Paul Medvedev 4,6,7, Sebastian Deorowicz5 and

Rayan Chikhi1

1Computational Biology Department, Institut Pasteur, Université Paris Cité, F-75015 Paris, France, 2Univ Rennes, Inria, CNRS, IRISA—

UMR, 6074 Rennes, France, 3Heinrich Heine University Düsseldorf Medical Faculty Institute for Medical Biometry and Bioinformatic,

Düsseldorf 40225, Germany, 4Department of Computer Science and Engineering, The Pennsylvania State University, State College

16802, USA, 5Department of Algorithmics and Software, Silesian University of Technology, Gliwice, PL-44-100 Akademicka 16, Poland,
6Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College 16801, USA and 7Huck

Institutes of the Life Sciences, The Pennsylvania State University, State College 16802, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol
Received on March 18, 2022; revised on June 27, 2022; editorial decision on July 20, 2022; accepted on July 26, 2022

Abstract

Summary: Bioinformatics applications increasingly rely on ad hoc disk storage of k-mer sets, e.g. for de Bruijn graphs
or alignment indexes. Here, we introduce the K-mer File Format as a general lossless framework for storing and
manipulating k-mer sets, realizing space savings of 3–5� compared to other formats, and bringing interoperability
across tools.

Availability and implementation: Format specification, Cþþ/Rust API, tools: https://github.com/Kmer-File-Format/.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sets of k-mers are widely used in DNA sequence analysis, for in-
stance in genome assembly [e.g. SPAdes (Bankevich et al., 2012)],
indexes of sequence aligners [e.g. minimap2 (Li, 2018)], large-scale
sequence search tools (Marchet et al., 2021). Often, bioinformatics
tools are k-mer consumers, i.e. they take as input a k-mer set given
by one of the k-mer producers, typically k-mer counters [e.g. KMC
(Deorowicz et al., 2013), DSK (Rizk et al., 2013)]. Producers use ad
hoc binary formats for storing k-mers on disk. This leads to ineffi-
cient development practices, as consumers need to write specific
parsers for each producer format. Standard file formats greatly fa-
cilitate interoperability, e.g. in the case of the SAM/BAM formats
(Cock et al., 2015) for sequence alignment and HDF5 (Folk et al.,
2011) for general structured data.

We propose the K-mer File Format (KFF), an interoperable and
efficient approach to store k-mer sets. We provide APIs in Cþþ and
Rust, as well as file manipulation and conversion tools to facilitate
inspection and integration into other tools. KFF has already been
integrated in several tools: the KMC and DSK k-mer counters, the
ESS-Compress (Rahman et al., 2020) compression tool and kmtricks
(Lemane et al., 2022) for k-mer matrix construction. We present the
rationale of our approach, the KFF 1.0 file format, and demonstrate
the efficiency of KFF for storing k-mers from sequencing data.

2 Approach

Tools producing k-mer sets essentially use similar storage techni-
ques. In Jellyfish (Marçais and Kingsford, 2011) and DSK, a k-mer
is encoded in 2 bits per nucleotide and the entire set is stored as a
succession of k-mers and associated data (e.g. abundances). In
KMC, a more advanced format is used to reduce space and to allow
fast, logarithmic time, queries (see ‘KMC file format description’ in
the Supplementary Material for more details).

Recent works (B�rinda et al., 2021; Rahman et al., 2021) demon-
strated space-efficient storage of genomic k-mers using their spec-
trum-like property (Chikhi et al., 2021), i.e. assuming that most k-
mers originate from a set of long strings. In this spectrum-preserving
string set representation (SPSS), what are stored are sequences lon-
ger than k, where each window of length k is a k-mer from the ori-
ginal set, and achieve a space of around 3 bits per k-mer [in Rahman
et al. (2020), k¼31, no counts stored]. However, the representation
is non-trivial to compute and requires hours for a human genome.

We propose a space-efficient format that is fast to produce,
encoding k-mers in binary and storing them in overlapping form.
The drawback for space efficiency is that random accesses are not
supported in KFF, yet they are unnecessary in the many consumer
applications that only read k-mer sets from disk sequentially
(Bankevich et al., 2012; Rahman et al., 2020).

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2022, 1–3

https://doi.org/10.1093/bioinformatics/btac528

Advance Access Publication Date: 29 July 2022

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac528/6651834 by guest on 25 August 2022

https://orcid.org/0000-0002-0930-8920
https://orcid.org/0000-0002-7210-3178
https://orcid.org/0000-0003-0776-6407
https://orcid.org/0000-0003-3143-594X
https://github.com/Kmer-File-Format/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/


3 Methods

A KFF file is composed of a short header and a succession of sections
(see Fig. 1). The header contains the format version, the nucleotide
2-bit encoding (e.g. A:0, C:1, G:3, T:2), global flags to indicate
whether k-mers are all unique and/or in canonical form, and finally
a metadata section.

The rest of the file consists of sections of several types. The head-
er of a section indicates its type. A V section defines variables that
are helpful for the following sections. Actual k-mer sets and their
associated data are stored in either sequences (R) or minimizer
sequences (M) sections. In both R and M sections, longer sequences
store overlapping k-mers, avoiding some redundancy. R sections
store sequences explicitly, and the key idea of M sections is to avoid
storing the minimizer sequence explicitly, and instead only indicate
at which position to insert it in the stored sequence. An I section
provides an index to quickly find the positions of sections within a
KFF file, but its purpose is not to index k-mers themselves. For more
details, see Supplementary Material ‘KFF file format details’ section.

The Cþþ and Rust APIs provide convenient ways to read and
write KFF files, and in particular a high-level Cþþ function is pro-
vided to iterate through k-mers in only four lines of code.

4 Results

We created the kff-tools software suite on top of the Cþþ KFF
API. It is a collection of small programs that manipulate KFF files,
such as merging/splitting, validation, bucketing. They are available
at github.com/Kmer-File-Format/kff-tools. These tools complement
the already existing KMC tools (Kokot et al., 2017) that allow more
complex operations on k-mer sets, e.g. union, intersection and com-
plex joins. KMC tools have further been adapted to support KFF
files where k-mers are ordered.

To demonstrate that KFF provides significant space savings com-
pared to other file formats, we downloaded short-read sequencing
data from the chicken genome (2.8 billion distinct 32-mers) and the
Human genome (5.7 billion distinct 32-mers), counted using KMC
(Deorowicz et al., 2013). We evaluated several file formats: naive

text representation, KMC format, KFF storing k-mers naively, KFF
where k-mers are compacted as super-k-mers (i.e. a group of over-
lapping k-mers that share the same minimizer) (see Supplementary
Material ‘Experimental setup relative to kmtricks’ section) and KFF
where k-mers are compacted using a spectrum-preserving string set
(Rahman et al., 2021) (see Supplementary Material ‘Experimental
setup relative to ESS-Compress’ section). Full data processing
details, as well as additional results using compression, are available
in the Supplementary Materials.

Table 1 shows that by recording compacted super-k-mers with
KFF, it is possible to use roughly 3� less space than with native
KMC format for storing the same set of k-mers. In terms of running
times, on the Gallus dataset using 8 threads, KMC took 9 min,
KFFþsk 113 min and KFFþSPSS 900 single-threaded minutes (opti-
mization pending). On average KFF with super-k-mers requires
17 bits per k-mer (omitting the data), while KMC uses 56 bits/k-mer.
Using SPSS improves storage further to 5 bits per k-mer.
Furthermore, gzip compression adds an additional 2� compression
gain for KFF files and 1.25� gain for KMC files.

In conclusion, we propose the k-mer set file format KFF, along
with a versatile Cþþ and Rust API to read and write k-mers and a
toolkit for file manipulations. We hope that KFF will boost interoper-
ability between many software tools that use k-mer sets, and simul-
taneously improve their efficiency due to the compression features of
KFF. Many suggestions and requests are emerging from discussions
with the community and extensions of features to the format are cur-
rently being considered. The KFF format could for instance be used to
store k-mer sketches, although current sketching tools store hashes on
disk (Pierce et al., 2019), discarding the originating k-mers.

Acknowledgements

The authors thank Dr Maggie Sefton for help with Figures.

Funding

R.C. was funded by ANR Inception (ANR-16-CONV-0005) and PRAIRIE

[ANR-19-P3IA-0001] grants. M.K. and S.D. were supported by the National

Science Centre, Poland [DEC-2019/33/B/ST6/02040]. Work supported in part

by the National Science Foundation [1453527 and 1931531], and by the

European Union’s Horizon 2020 Research and Innovation Programme under

the Marie Skłodowska-Curie grant agreement No 956229.

Conflict of Interest: The authors have no conflicts of interest to declare that

are relevant to the content of this article.

References

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

B�rinda,K. et al. (2021) Simplitigs as an efficient and scalable representation of

de Bruijn graphs. Genome Biol., 22, 1–24.

Chikhi,R. et al. (2021) Data structures to represent a set of k-long DNA

sequences. ACM Comput. Surv., 54, 1–22.

Fig. 1. Structure of the K-mer File Format with k¼ 10 and minimizers of size 8. Top

right part: a toy k-mer set shown in plain text. Left part: The same k-mer set is rep-

resented in KFF. The top-left box is the file header and each following boxes are dif-

ferent sections. Bottom right part: alternatively, a Sequences section can be

represented more succinctly by a Minimizer section which contains the same set of

k-mers. For example, the first entry in the M section has sequence ACTG with its

minimizer at position 3, hence it corresponds to sequence ACTAAACTGATG of

size 12 (which is identical to the first entry in the R section), from which three k-

mers can be extracted

Table 1. Comparison of file sizes (in GB) for several techniques for

storing 32-mers on disk: naive plain-text encoding (‘T’), KMC file

format (‘KMC’), KFF file format storing one k-mer per block

(‘KFFþnaive’) or storing super-k-mers as created by kmtricks

(‘KFFþsk’), or using k-mers stored as a string-preserving string set

(’KFFþSPSS’)

Sample T KMC KFFþnaive KFFþsk KFFþSPSS

Gallus gallus 95.1 19.1 24.2 7.4 4.2

G.gallus, gz 19.9 15.0 16.6 4.8 2.0

Homo sapiens 191.0 37.7 48.5 16.8 11.1

H.sapiens, gz 37.9 30.6 33.8 11.9 6.4

Note: ‘gz’ indicates gzip compressed outputs.

2 Y.Dufresne et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac528/6651834 by guest on 25 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac528#supplementary-data


Cock,P.J. et al. (2015) Sam/bam format v1. 5 extensions for de novo assem-

blies. BioRxiv, page 020024. https://doi.org/10.1101/020024.

Deorowicz,S. et al. (2013) Disk-based k-mer counting on a PC. BMC

Bioinformatics, 14, 160.

Folk,M. et al. (2011) An overview of the hdf5 technology suite and its applica-

tions. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array

Databases, ACM, Uppsala, Sweden, pp. 36–47.

Kokot,M. et al. (2017) KMC 3: counting and manipulating k-mer statistics.

Bioinformatics, 33, 2759–2761.

Lemane,T. et al. (2022) kmtricks: Efficient construction of bloom filters for

large sequencing data collections. Bioinformatics Adv., 2. https://doi.org/10.

1093/bioadv/vbac029.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for effi-

cient parallel counting of occurrences of k-mers. Bioinformatics, 27,

764–770.

Marchet,C. et al. (2021) Data structures based on k-mers for querying large

collections of sequencing data sets. Genome Res., 31, 1–12.

Pierce,N.T. et al. (2019) Large-scale sequence comparisons with sourmash.

F1000Res., 8, 1006.

Rahman,A. et al. (2021) Representation of k-mer sets using

Spectrum-Preserving string sets. J. Comput. Biol., 28, 381–394.

Rahman,A. et al. (2020) Disk compression of k-mer sets. In: 20th

International Workshop on Algorithms in Bioinformatics. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, Pisa, Italy.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

KFF 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac528/6651834 by guest on 25 August 2022

https://doi.org/10.1101/020024
https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1093/bioadv/vbac029

	tblfn1



