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Database growth

- Tara Ocean: 250 billions metaG reads
- 100000 genome project: ~19 PB
- SRA: > 30 PB

2https://trace.ncbi.nlm.nih.gov/Traces/sra/

https://trace.ncbi.nlm.nih.gov/Traces/sra/
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Querying this data could help answer some questions:
- RNA-seq

- Expressed isoform according to tissues [1]
- Gene fusion [2]

- Microbial genomics
- Antimicrobial resistance [3]

- Genome dynamics
- Phylogeny [4]

- …

[1]  B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments. Nature Biotechnology, 2016.
[2] Y. Yu, et al. Seqothello: querying rna-seq experiments at scale. Genome Biology, 2018.
[3] N .Luhmann, et al. Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs. BioRxiv, 2020.
[4] R. Wittler. Alignment-and reference-free phylogenomics with colored de bruijn graphs. Algorithms for Molecular Biology, 2020.



How to query these data ?
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Existing solution: Example of Ocean Gene Atlas

6http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/
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Existing solution: Example of Ocean Gene Atlas

9http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/

- Limited to Tara assembled Genes
- Usage of Blast, Diamond, HMMER

http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/


From sequence alignement to k-mers

Problem: Given experiments sets, and a sequence of interest, which dataset contains 
this sequence ?

In terms of k-mers:

- A query Q matches an experiment L if at least a fraction 𝜃 of Q’s k-mers are 
present in L.
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k-mer indexing
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query requires membership data structures

Query:
ACACTCGCAGAGGGATTATTTTTAAA

For each k-mer
(e.g. ACTCGCAGAG)

dataset_0 False

dataset_1 True

... ...

dataset_n True



k-mer indexing

k-mer indexing methods (non exhaustive):

- BFT (Holley et al., 2016)*
- Sequence Bloom Tree*:

- SBT (Solomon & Kingsford, 2016)
- AllSomeSBT (Sun et al., 2017)
- SSBT (Solomon & Kingsford, 2018)
- HowDeSBT (Harris & Medvedev, 2019)

- Mantis (Pandey et al., 2018)
- SeqOthello (Yu et al., 2018)
- BIGSI (Bradley et al., 2019)*
- COBS (Bingmann et al., 2019)*
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*Based on Bloom filters

Review of k-mer indexing methods: Data structure based on k-mers for querying large 
collections of sequencing datasets (Marchet et al. 2019) 



k-mer indexing: State of the art

Space and time results on 2585 human RNA-seq sets
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Marchet et al. 2019



k-mer indexing: State of the art

Space and time results on 2585 human RNA-seq sets
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Marchet et al. 2019

- focuse on improving data processing time in the case of HowDeSBT



Bloom filters

15

BF supports two operations:
- Insertion: for each key, get n positions 

from n hash functions. Set all these 
positions to 1

- Query: check bit value for n positions
adapted from wikipedia
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Bloom filters
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BF supports two operations:
- Insertion: for each key, get n positions 

from n hash functions. Set all these 
positions to 1

- Query: check bit value for n positions

Bloom filters from read set:
- Count k-mers 
- For each k-mer: compute hashes and set corresponding bits 

adapted from wikipedia

Bloom filters construction issues:
- The largest bottleneck is the k-mer count step 
- Bad data locality motivations



kmtricks
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kmtricks: bloom filters construction

Step 1: Compute minimizers repartition

- Compute minimizers frequency
- Dispatch minimizers in p partitions. 
- These partitions will contain the k-mers of our data sets. 

The idea is to have an equivalent number of k-mers 
per partition.

20



kmtricks: bloom filters construction

Step 2: Compute super-k-mers from reads

- Dispatch super-k-mers in their partitions according to their minimizers
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kmtricks: bloom filters construction

Step 3: Sorting count algorithm

- Split super-k-mers into k-mers and hash them.
- Sort: the count is given by identical consecutive hashes.
- Hash spaces are specific and consecutive according to the partitions 

(== according to a set of minimizers).
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H0 4
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H15 9

H9 1
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H11 5
H13 1
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kmtricks: bloom filters construction

Step 4: Merge equivalent partitions between datasets

- Add empty lines for missing hashes (k-mers)
- Hashes are not stored but are given by line numbers 
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D1
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kmtricks: bloom filters construction
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H0 1  1
H1 0  0
H2 0  0
H3 1  0
H4 1  1
H5 1  1
H6 0  0
H7 1  0

H8 1  0
H9 0  0
H10 1  1
H11 1  1
H12 0  0
H13 0  0
H14 0  0
H15 1  1

Step 5: Transpose each partition to obtains individual bloom filters

P1

P2

1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1

0 0 1 1 0 0 0 1
1 0 1 1 0 0 0 1

P1 P2

D1 D2

D1 bloom filter
D2 bloom filter

transpose



kmtricks: rare k-mers handling
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- Leverage information across samples during the merging step.

- Salvage k-mers seen often but at low counts in datasets
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- Leverage information across samples during the merging step.

- Salvage k-mers seen often but at low counts in datasets

H0 4
H3 7
H4 1
H7 10

H0 2
H4 1
H5 6

H8 1
H10 7
H11 2
H15 9

H9 1
H10 7
H11 5
H13 1
H15 4

H0 1  1
H1 0  0
H2 0  0
H3 1  0
H4 1  1
H5 1  1
H6 0  0
H7 1  0

H8 0  0
H9 0  0
H10 1  1
H11 1  1
H12 0  0
H13 0  0
H14 0  0
H15 1  1

D1 D2



kmtricks results

Indexing of 100 human RNA-seq read sets:

- Comparison vs HowDeSBT classical construction
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Time Max memory Max disk usage

HowDeSBT 
makebf 2h27 13.2 GB 55.1 GB

kmtricks 35min48s 3.5 GB 56.6 GB



kmtricks results

Indexing of 674 human RNA-seq read sets (> 1 TB gzip):

- Comparison vs HowDeSBT classical construction
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Time Max memory Max disk usage

HowDeSBT makebf 59h03 13.2 GB 206 GB

kmtricks 22h10 22 GB 1.5 TB

kmtricks w/o merge 17h56 21 GB 238 GB



kmtricks overview
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kmtricks library: 
encoding, sequences representation,
k-way merge algorithm, bit matrix, SSE 
transposition, streaming compression etc ...

+

https://github.com/tlemane/kmtricks

Modular k-mer count matrix and Bloom filter construction for large read collections

https://github.com/tlemane/kmtricks


Conclusion & Future work

- Improves bf construction time but it's still very insufficient to hope to scale up on 
the very large databases

- Application on medium/large scale dataset: TARA Ocean (running)

- Take advantage of better data locality:
- The query can be seen as a set of super-k-mers (corresponding to a set of minimizers)
- For a query, we probably don't need the whole set of partitions. 
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Thank you 
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