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Abstract31

The breadth of life’s diversity is unfathomable, but public nucleic acid sequencing data offers a32

window into the dispersion and evolution of genetic diversity across Earth. However the rapid growth33

and accumulation of sequence data have outpaced efficient analysis capabilities. The largest collection of34

freely available sequencing data is the Sequence Read Archive (SRA), comprising 27.3 million datasets35

or 5 × 1016 basepairs. To realize the potential of the SRA, we constructed Logan, a massive sequence36

assembly transforming short reads into long contigs and compressing the data over 100-fold, enabling37

highly efficient petabase-scale analysis. We created Logan-Search, a k-mer index of Logan for free38

planetary-scale sequence search, returning matches in minutes. We used Logan contigs to identify39

>200 million plastic-degrading enzyme homologs, and validate novel enzymes with catalytic activities40

exceeding current reference standards. Further, we vastly expand the known diversity of proteins (30-41

fold over UniRef50), plasmids (22-fold over PLSDB), P4 satellites (4.5-fold), and the recently described42

Obelisk RNA elements (3.7-fold). Logan also enables ecological and biomedical data mining, such as43

global tracking of antimicrobial resistance genes and the characterization of viral reactivation across44

millions of human BioSamples. By transforming the SRA, Logan democratizes access to the world’s45

public genetic data and opens frontiers in biotechnology, molecular ecology, and global health.46
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1 Main47

DNA sequencing has revolutionized our perspective on life’s diversity, yet the majority of the world’s48

sequencing data are inaccessible to systematic search and analysis. The Sequence Read Archive (SRA)49

houses over 50 petabases (Pbp; 5.0×1016) of public sequencing data, and is growing exponentially (Fig. 1a)50

[1]. This data represents billions of dollars of global research output, spanning all known life and covering51

every continent (Fig. 1).52

Analyses of the SRA have yielded profound scientific discoveries, from hundreds of thousands of novel53

viruses to shifts in antibiotic resistance patterns [2, 3, 4, 5, 6, 7, 8, 9]. Yet the methods for massive-scale54

sequence analyses, based on assembly or k-mer indexing, face computational and economic constraints.55

The largest collection of public assembled data, NCBI GenBank WGS, spans less than 3% of the SRA [10],56

while k-mer indexing of reads have not scaled beyond 9% of direct SRA data (Table 1).57

To enable SRA-wide analysis, we developed Logan, an assembly of 96% of the SRA (27 million acces-58

sions as of December 2023) and a suite of associated tools. Using massively parallel cloud processing, we59

transformed 44.1 petabases of raw sequencing data into 0.9 petabases of long assembled contigs. Logan60

achieved a >100-fold compression of the original SRA data, and is 36-fold larger than GenBank WGS.61

Logan assembly fundamentally changes the economics and speed of SRA-wide searches. To demonstrate62

this, we developed Logan-Search, a k-mer index for finding a nucleotide sequence across all Logan as-63

semblies in minutes. For protein homology search, we aligned using DIAMOND2 all Logan contigs to a64

protein query in 11 wall-clock hours, with a near 20-fold cost decrease relative to previous methods such65

as Serratus [11, 2].66

We demonstrate Logan’s utility by making discoveries in three domains. First, for bioprospecting,67

we performed an SRA-wide search for homologs of plastic-degrading enzymes with sensitivity to ≈ 40%68

amino acid sequence identity, discovering over 200M novel enzymes, including several which we validated69

as having higher and more varied catalytic activities than previous standards. Second, for scalable clinical70

discovery, we used Logan-Search to screen millions of human datasets for viral gene expression sequences.71

We uncovered recurrent Human Herpesvirus-6 reactivation in tumor-infiltrating lymphocyte therapy prod-72

ucts, broadening the characterization of viral reactivation in cell therapies ex vivo [12]. Third, we mined73

Logan contigs for proteins, plasmids and subviral elements. This effort massively expanded the known74

protein universe, with a 30-fold increase in protein diversity over UniRef at 50% amino-acid clustering75

identity. We also obtained a 22-fold increase in plasmid families, a 4.5-fold increase in the diversity of P476

satellites, and a 3.7-fold expansion of the recently described Obelisk-like species [9].77

A Petabyte-Scale Assembly and Search Engine of the Sequence Read Archive78

To construct the Logan assemblage we applied two complementary assembly strategies to the entirety of79

the SRA (as of 2023-12-10), comprising 27.3 million SRA accessions (Fig. 1b). The first strategy generates80

unitigs, which are near-lossless representations aiming to preserve sequence content from a sample, making81

them ideal for sensitive k-mer-based search. The second strategy builds on the unitigs to create contigs,82

which form longer, consensus sequences by resolving small biological variations. Contigs are optimized83

for protein identification and other downstream analyses.84

In total, the Logan assemblage is 4.59 Pbp of unitigs (2.18 petabytes compressed) and 0.90 Pbp of85

contigs (0.31 petabytes compressed, Fig. 1b), generated in approximately 30 hours of wall-clock time, using86

a peak of 2.18 million CPU cores (Methods, Extended Data Fig 1). All assemblies and documentation are87

publicly hosted and freely available (s3://logan-pub/, https://github.com/IndexThePlanet/Logan).88

To make the Logan assemblage rapidly search-able we developed Logan-Search, a 1 petabyte k-mer89

(k=31) index of Logan unitigs from 23.4M SRA accessions. For queries of up to 1 kb, Logan-Search returns90

all indexed SRA accessions containing a user-set fraction of the query k-mers, along with associated SRA91

metadata. This provides rapid insights into the environmental and geographic distributions of a gene92

(Fig. 1c). Logan-Search surpasses previous non-Logan based SRA sequence-search efforts [8, 4, 6] by at93
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least an order of magnitude in both the number of accessions and total coverage (Table 1). To democratize94

SRA-scale sequence exploration, we deployed Logan-Search as a web interface (https://logan-search.95

org), enabling researchers to freely query Logan unitigs in a few minutes.96

Logan’s 0.9 petabases of contigs span the entire tree of life, providing orders of magnitude more97

assembled data for nearly every sequenced species (Fig. 1d). For key model organisms and agricultural98

species, the amount of assembled data increases dramatically, rising from less than 4 Tbp in GenBank99

to approximately 285 Tbp for Homo sapiens (70-fold increase), from 0.9 Tbp to 21 Tbp for Bos taurus100

(cattle, 23-fold increase), from 0.5 Tbp to 8.8 Tbp for Gallus gallus (chicken, 18-fold increase), and from101

0.2 Tbp to 7 Tbp for Zea mays (maize, 35-fold increase).102

The assembled metagenome samples in Logan exceed 130 terabases (over 5.7 million accessions), 144-103

fold more bases than a comparable collection of short read assembled metagenomes (MGNify [13]). To104

quantify the novel sequence content within Logan’s metagenomes, we used sketching to estimate the105

number of distinct 31-mers and compared this to the entirety of the GenBank WGS database. Logan’s106

metagenome collection contains an estimated 33.9 trillion distinct k-mers that appear two or more times107

in an accession, a nearly 4-fold increase over the 8.7 trillion found in all of GenBank WGS. Crucially, of108

Logan’s 33.9 trillion metagenomic k-mers, 32.3 trillion (95%) are not present anywhere in the GenBank109

WGS database, highlighting a vast reservoir of previously uncharacterized genetic diversity.110

Expanding the arsenal of plastic-active enzymes111

Logan is a powerful tool for enzyme discovery. Since the mid-20th century humans have manufactured in112

excess of 12 gigatons of plastics, with the majority ending up as waste which degrades into micro- and113

nanoplastics. These particles infiltrate global ecosystems and food supplies, where they bio-accumulate114

to high incidence in humans [14, 15]. The 2016 discovery of a polyethylene terephthalate (PET) plastic115

degrading enzyme in Ideonella sakaiensis (IsPETase) has catalyzed bio-prospecting and bioengineering116

efforts to identify novel and high-efficiency enzymes for recycling and remediating plastic polymers [16,117

17, 18, 19, 20].118

To expand the diversity of plastic-active enzymes, we created a search query from the 213 validated119

plastic-active enzyme sequences in the PAZy database [18]. These sequences group into 11 CATH protein120

domains [21], showing polyphyletic activity against varying plastic substrates (Fig. 2a). First, we searched121

the 213 sequences in the NCBI nr database (0.003 Pbp, DIAMOND2 blastp) and recovered 2.73 million122

distinct sequences or 1.05 million non-redundant enzyme homologs (clustered at 90% amino acid identity,123

aaid).124

To expand this, we then queried these 1.05 million enzymes across Logan contigs, recovering 1.12125

billion matching sequences. From these, 385 million sequences (34.3%) matched an nr enzyme at 90%126

identity. We clustered the remaining 735 million sequences (65.7%) into 215.7 million non-redundant127

enzyme homologs (Fig. 2b). Overall, Logan provided a 205-fold expansion of sequence diversity over NCBI128

nr, spanning multiple plastic-active domains, including a 190-fold expansion of A/B hydrolases, of which129

IsPETase is a member (Fig. 2c). This dataset, PETadex , represents the most comprehensive and diverse130

collection of candidate plastic active enzymes. To facilitate the development of global research solutions131

for plastic remediation, we are releasing the PETadex data freely, and without restriction (https://132

github.com/ababaian/petadex).133

To test if PETadex candidate plastic-active enzymes contain catalytically active sequences, we devel-134

oped a quantitative high-throughput enzyme screen using a PET subunit substrate, bis(2-hydroxyethyl)135

terephthalate (BHET). Candidate PETase enzymes were expressed as cell surface displayed or secreted136

constructs in baker’s yeast, Saccharomyces cerevisiae. PET conversion activity was measured via a colo-137

metric halo around yeast colonies, which corresponds to the formation of 2-hydroxyethyl terephthalate138

(MHET) or a higher molecular weight ”halo product” (Fig. 2d, Extended Data Fig. 3).139

As an initial screen, we selected full-length IsPETase or PAZy A/B hydrolase-like homologs (40%140

aaid). From 2,272 unique matches, we synthesized 161 randomly selected enzymes, and 21 ancestral141
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reconstructions (AR). We screened these enzymes over six timepoints and in the two expression systems,142

which revealed 35/161 (22%) of the natural, and 8/21 (38%) of the AR sequences had plastic-activity143

(Fig. 2f, Extended Data Fig. 4a). The most active enzymes identified showed overall conversion compara-144

ble to IsPETase with varying preferences for MHET or halo product formation (Extended Data Fig. 4a).145

Inspection of the enzyme phylogeny revealed a clade enriched for halo-formation activity, which was146

re-sampled for an additional 13 enzymes. Resampling yielded 9/13 (69%) plastic-active enzymes. High-147

performance liquid chromatography (HPLC) assessment of BHET conversion activity of the two most148

active enzymes (SRR23008605 28430 and SRR10663367 452477) revealed that these enzymes exceeded149

IsPETase activity for MHET or halo product formation (Extended Data Fig. 4b). Interestingly, these150

two enzymes also produced the PET monomer product TPA at substantially higher rates than IsPETase151

and 4-fold more TPA than the engineered FAST-PETase (Fig. 2g).152

Microplastics are projected to increase exponentially and biocatalysts are a means by which these153

environmental contaminants can be remediated. To address this we created PETadex , a free and un-154

restricted resource of candidate plastic-active enzymes, two orders of magnitude more expansive than155

previously available. Logan resources such as this enable the deep exploration of the evolutionary land-156

scape of proteins including identifying candidate enzymes with higher application-specific activities, more157

complete product yields (TPA formation), or novel chemical functions (halo product formation).158

Characterization of Human Herpes Virus 6 reactivation in heterogeneous ex vivo159

cultures160

Our recent work has demonstrated that retrospective assembly and quantification of viral nucleic acids at161

the petabase scale could reveal new associations between humans and viruses, including in clinical contexts162

[2],[22]. Specifically, comprehensive mining of Serratus [2] led to the discovery of Human Herpesvirus 6163

(HHV-6) reactivation in chimeric antigen receptor (CAR) T cells [22], a finding that contributed to revised164

Food and Drug Administration guidelines requiring the screening of viral reactivation in allogeneic CAR165

T cells [23].166

We hypothesized that Logan could further identify instances of viral reactivation in human cells and167

tissues where viral expression was not considered in the primary analyses. Among the 103 HHV-6 type B168

(HHV-6B) genes, we selected two transcripts U83 and U91 for sequence query based on high expression,169

short length (less than 1kb), and known gene function (Extended Data Fig. 6a; Methods). We queried170

these two transcripts using Logan-Search against 1,476,236 human RNA-sequencing datasets (Fig. 3a).171

Each query took less than five minutes to complete, resulting in 13 distinct BioProjects with >50% k-mer172

coverage across both HHV-6 transcripts (Fig. 3b; Methods), four of which had known HHV-6 expression.173

These four projects served as positive controls, which included CD4+ memory T cell cultures annotated174

by Serratus [24],[25] and CAR T products with previously characterized HHV-6 reactivation [22], [26]).175

Supported by the recovery of these positive controls, we then considered the nine novel BioProjects.176

According to the BioSample meta-data, these samples comprised additional gastrointestinal tumors [27]177

and CAR T cells [22], consistent with previous characterizations in other settings (Fig. 3c). The novel178

CAR T BioSamples were from a study profiling infusion products and longitudinal profiles from 26179

patients with B cell acute lymphoblastic leukemia receiving anti-CD19/CD22 CARs [28]. While this180

study focused predominantly on CAR-intrinsic gene expression changes associated with variable patient181

outcomes, Logan enables retrospective discovery of HHV-6 reactivation in these samples. Further, as182

this study was published after the completion of Serratus [2], HHV-6 reactivation in this cohort was183

not previously annotated or reported by the original authors. These results further supports our prior184

conclusions of HHV-6 reactivation occurring agnostic of disease or CAR target.185

Next, we focused on the tumor-infiltrating lymphocytes (TILs) or organoid model annotated BioSam-186

ples. To the best of our knowledge, no prior reports of viral reactivation had been previously reported187

in these settings. However, since these systems involve extended cultures of heterogeneous mixtures that188

include CD4+ T cells, we reasoned that the Logan associations could reflect HHV-6 reactivation in ex vivo189
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cell culture settings of T cells [22]. Indeed, in the lung organoid sample [29], we identified a population of190

HHV-6 super-expressor cells among the CD4+ proliferating T cells (Extended Data Fig. 6b), supporting191

our prior characterization of a rare cell state responsible for seeding lytic virus following reactivation192

[22]. The annotated HHV-6+ TIL samples were infusion products profiled from patients with metastatic193

melanoma treated from three clinical trials [30]. Analysis of the 16 donors profiled with RNA-seq demon-194

strated high-confidence HHV-6 detection in 5 infusion products, predominantly from the CD4+ sorted195

populations (Fig. 3d). At least one positive donor was observed in each trial, underscoring that HHV-6196

reactivation in these adoptive cell therapies is a recurrent phenomenon.197

As viral RNA accumulation coincides with increased viral DNA copy number [22], we examined198

additional profiles of clinical TIL products analyzed via chromatin immunoprecipitation and sequencing199

(ChIP-seq) for a pan-H3 acetylation modification that marks transcriptionally active chromatin. Among200

19 donors spanning the same three clinical trials, we observed viral reactivation in samples from all three201

trials, including high HHV-6 expression from a donor (D10) where RNA-seq was not obtained (Fig. 3e;202

Extended Data Fig. 6c). Further analyses of viral single-nucleotide polymorphisms revealed 72 mutations203

specific to either donor, excluding the possibility of a common source of HHV-6 contamination during204

library preparation (Extended Data Fig. 6d). Across both modalities, our results suggest that HHV-6205

reactivation in T cell therapies occurs independent of exogenous DNA and further implicates the rapid206

proliferation of T cells ex vivo as a critical signal underlying HHV-6 reactivation in vitro.207

Taken together, our analyses shows that Logan effectively uncovers novel biological associations of208

viruses using existing human genomic profiles. In particular, this vignette reveals that latent HHV-6209

can reactivate in rare proliferating CD4+ T cells from heterogeneous cell culture conditions, spanning210

from organoids to adoptive cell therapies with or without genetic engineering. As culture duration is211

a key determinant of viral reactivation in CAR T cells [22], our observation of HHV-6 reactivation in212

TIL therapies is consistent with the longer culture durations than widely-used autologous CAR T cell213

therapies. Our characterization of viral reactivation ex vivo motivates further work into gene editing214

and/or small molecule approaches that can mitigate reactivation to maximize the safety and efficacy of215

cell therapies [23]. More generally, our results motivate future work to monitor viral reactivation across216

current and future cell therapies using comprehensive genomics profiling and scalable analyses enabled217

by Logan.218

Expanding the Known Universe of Proteins, Plasmids, and Viral Elements219

Next, we mined the 0.9 petabases of Logan’s assembled contigs to reveal order-of-magnitude expansions220

in the known diversity of proteins and mobile genetic elements. These planetary-scale deep homology221

searches were completed in as little as 11 hours, using cloud-deployed translated protein-to-nucleotide222

alignment.223

Billions of diverse Logan proteins Logan expands the known protein universe, with 109.4 billion224

proteins clustered into 3.0 billion non-redundant sequences at 90% amino acid identity and 90% alignment225

overlap (Fig. 4d). This represents over an order of magnitude greater set of protein diversity relative226

to large-scale commercial (BaseData [31]) or public (OMG [32], MGnify [13], BFD [33]) metagenomic227

resources, and a nearly 30-fold increase over UniRef50.228

This expanded diversity provides an invaluable resource for downstream applications. In a case study229

of 100 viral proteins, sensitive searches against a clustering of Logan proteins at 50% amino acid iden-230

tity produced substantially more diverse multiple sequence alignments compared to searching against a231

standard database [33]. We observed an approximately 2-fold increase in the Number of Effective Se-232

quences (Neff: 2.19 to 4.89; Extended Data Fig.5B, left panel). Doubling of Neff values translates into233

improved protein structure predictions, with mean predicted Local Distance Difference Test (pLDDT)234

scores rising from 46.7 (“very low”) to 88.6 (“high”), and 90 out of 100 proteins modeled at high qual-235

ity (Extended Data Fig.5B, right panel), highlighting the impact of our expanded protein clustering on236
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improving AI-structure prediction accuracy.237

Obelisks Obelisks are a newly discovered clade of viroid-like agents. Initially two complete, circular238

species were identified as persistent colonists in human gut metatranscriptomes, then a petabase-scale239

SRA search expanded this to 2,152 species genomes (defined here as Oblin-1 90% aaid clusters) [9]. With240

Logan we detected an additional 2,964 Obelisk species, a 2.4-fold increase. Likewise, the total Obelisk241

count increased 3.7-fold, to 26,263 sequences (Fig. 4b). The expanded Oblin-1 proteins have no homologs242

in NCBI nr, and no homologs known outside of Obelisks. This expanded dataset should accelerate research243

to uncover the role of these mysterious elements.244

P4 Satellites We then searched for P4-like satellites [34], mobile elements that hijack bacteriophages.245

P4-like satellites were recently found to be numerous in enterobacterial genomes, where they provide246

the host with anti-phage functions. We observed a 4.5-fold expansion of the number of these satellites247

(Fig. 4c), including elements that are unrelated with previous sub-families (Extended Data Fig. 8c). The248

pan-genome of these elements is thus doubled in relation to RefSeq (Extended Data Fig. 8c). These newly249

uncovered P4 elements may thus encode many novel anti-phage functions of ecological and biotechnological250

relevance. These searches illustrate how to leverage Logan to mine for complex genetic elements with251

multiple core genes.252

Plasmids Plasmids are mobile genetic elements of Bacteria and Archaea that play a critical role in253

horizontal gene transfer, driving processes such as the spread of antibiotic resistance genes. Given their254

ecological and clinical importance, systematically characterizing plasmid diversity can provide valuable255

insights into global gene transfer patterns. We extracted all circular contigs from Logan assemblies and256

identified 468,614 putatively complete plasmids (264,160 unique sequences) across 195,347 metagenome,257

57,148 bacterial, and 12 archaeal isolate accessions. To evaluate the global distribution of these plasmids,258

including in samples where they were not fully assembled as circular contigs, we first reduced redundancy259

in the dataset by grouping highly similar sequences into 60,331 clusters, and then mapped representative260

sequences from each cluster to all Logan contigs. This approach identified plasmids in 2,095,914 samples261

over the globe (Fig. 4d), highlighting their widespread distribution. Moreover, the number of distinct262

detectable plasmids has steadily increased over time (Fig. 4e).263

Next, we investigated the origins underlying this extensive plasmid diversity by analyzing the compo-264

sition of plasmid clusters. We found that 92.5% comprised only metagenomic sequences, while just 3.6%265

consisted exclusively of plasmids from cultured organisms. Despite this predominance of environmental266

sequences, only 17.5% of metagenomic plasmids could be assigned to known replicon families compared267

to 78.3% from isolates, highlighting that the plasmid diversity in natural environments remains largely268

uncharacterized. Environmental plasmids were depleted of known antimicrobial resistance (AMR) genes269

and encoded more antimicrobial peptides (AMPs) relative to plasmids from isolates (Fig. 4f), reflecting270

distinct accessory gene repertoires and underscoring the value of assessing plasmid diversity across diverse271

sample types, as enabled by Logan.272

To quantify the extent of plasmid diversity uncovered by surveying Logan assemblies, we measured273

the phylogenetic diversity of selected replicase and relaxase proteins from these plasmids and compared274

it with complete plasmid genomes from established databases [35, 36]. Plasmids identified from Logan275

assemblies expanded the phylogenetic diversity up to 21.8-fold compared to PLSDB (Fig. 4g) and up to276

7.0-fold compared to IMG/PR (Data Availability, Plasmid PD Table). Overall, these results demonstrate277

that mining Logan assemblies reveals a vast and previously undiscovered diversity of genetic elements not278

captured by other genomic data resources.279

Antimicrobial resistance Logan also enables the global-scale analysis of antimicrobial resistance280

(AMR) across all publicly available sequencing data. By aligning all Logan contigs to the CARD database,281
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we identified 7.9 million AMR-positive (AMR+) SRA accessions and 13,000 AMR+ plasmids (Extended282

Data Fig. 7a). AMR genes are enriched in metagenomes across the SRA, whereas plasmids show the oppo-283

site pattern, driven by the large fraction of bacterial isolates in plasmid datasets (Extended Data Fig. 7b).284

We observe an enrichment of human and livestock metagenomic samples in AMR-positive datasets (Ex-285

tended Data Fig. 7c), both in SRA accessions and plasmids. Geographically, AMR+ metagenomes are286

broadly distributed, and their discovery has increased steadily over the past two decades based on col-287

lection dates (Extended Data Fig. 7d-e). AMR gene content varies across metagenome categories, with288

wastewater, livestock, and human metagenomes showing the highest enrichment in AMR gene counts289

per accession (Extended Data Fig. 7f-g). As sequencing databases continue to grow, full-scale sequence290

indexes can be re-purposed as an AMR-surveillance network.291

2 Discussion292

The exponential growth of sequence databases has created a paradox: humanity is generating more293

genomics data than ever before, which is making the data increasingly inaccessible due to computational294

barriers. Logan resolves this paradox through transforming raw sequencing data into accessible and295

searchable resources which enable systematic analysis of global sequence diversity, and offers a technical296

framework by which analysis capacity can continue to scale alongside database growth.297

Earth’s genetic diversity is a heritage of humanity [37]. To bulwark against a trend of commercializing298

public scientific data, we release all Logan data into the public-domain, and emphasize the continued need299

for community development of free and unrestricted data commons (https://registry.opendata.aws/300

pasteur-logan/). For decades, BLAST democratized sequence comparison at the gigabase scale, and301

it transformed biology research. Logan brings such a capacity to the petabase-era, enabling analogous302

discoveries across orders of magnitude larger datasets. Like the original NCBI web server that made303

BLAST a ubiquitous tool, Logan-Search’s web-interface (https://logan-search.org/) ensures that304

this resource is practically available for the research community.305

Logan-Search enables researchers to rapidly test hypotheses across the breadth of public sequencing306

data, uncovering unexpected connections that were previously hidden in plain sight, with direct applica-307

tions to biotechnology and planetary health. The discovery of HHV-6 reactivation in therapeutic CAR308

T-cells illustrated how large-scale sequence search could inform clinically relevant insights [22]. Here,309

we generalize such capability and extend this discovery to characterize latent viral reactivation tumor-310

infiltrating lymphocytes. Logan enables researchers to query the sampled biosphere for specific functions,311

such as identifying novel plastic-degrading enzymes that outperform engineered variants. It allows us to312

directly sample from nature’s vast parallel evolutionary experiment.313

The massive expansion of plastic-active enzyme homologs makes it immediately obvious that Logan314

enables the free and unprecedented capacity to screen for variants and novel versions of proteins and315

genes for biotechnology. This includes but is not limited to, for example, identifying novel viral vectors,316

or receptors/effectors with altered tropism; biosynthetic gene clusters for the production of antibiotics317

or natural products; efficient or process-optimized industrial enzymes such as proteases, amylases, or318

cellulases; or biotechnology enzymes such as Cas, reverse-transcriptases, or polymerases. Moreover, these319

public datasets are a rich resource with obvious applications as training data for a next-generation of320

machine learning and artificial intelligence models.321

The ability to efficiently analyze all public sequence data arrives at a critical moment for biodiversity322

research. Current sampling of Earth’s genetic diversity shows clear geographic and taxonomic biases,323

evident in SRA metadata. As climate change and habitat loss accelerate species extinction, systematic324

sequence analysis becomes essential not only for documenting disappearing diversity but for understanding325

the genetic basis of adaptation and resilience. Logan provides the technical foundations, while highlighting326

the urgent need for broader and more representative sampling of Earth’s biosphere.327
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Figure 1: Assembling all accessions of the SRA using a cloud architecture into unitigs and
contigs. (a) Geographic distribution of samples over the Sequence Read Archive (SRA), and the near-
exponential growth of SRA in terms of number of cumulative accession size of raw data. (b) Top diagram
describes the cloud computation workflow of Logan, starting from SRA reads, then computing unitigs and
contigs assemblies, and finally uploading data to our public repository. Bottom left diagram shows a toy
dataset with k-mers extracted from raw reads, then unitigs and contigs constructed. Bottom right bar
plot represents the size of the SRA compared to Logan assembled unitigs and contigs in sum of bases, and
WGS and BLAST databases. (c) The logan-search.org service enables searching an arbitrary query
(example: “GATTACA”) against the full unitig index of the SRA in less than 5 min; hits are mapped to
their geographic origins. (d) Tree of Life sampled with the 116 most abundant taxa from NCBI GenBank
WGS as well as 116 most abundant taxa in Logan assemblies, according to NCBI taxonomy. Black bars
represent the total number of assembled bases in GenBank WGS, and yellow bars the additional number
of bases in Logan contigs. Bars exceeding 20 terabases are capped and their true total assembly size
is annotated. Assembled bases for a subset of metagenome types are represented separately as the 8
rightmost bars.
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9

Figure 2: Discovering novel and efficacious plastic-active enzymes. (a) The domains and activity
of the 213 experimentally validated plastic-active enzyme (PAZy) search query (Extended Data Fig.
2a) (b) Logan PETadex homology search returned 216.75 million PAZy-homologs after clustering at
90% amino acid identity (Extended Data Fig. 2b,c). (c) PETadex -Logan is a >200-fold expansion of
candidate PAZy relative to NCBI nr across distinct PAZy CATH domains (see Methods). Histogram
shows the distribution of IsPETase-aligned sequences, illustrating that Logan (yellow) uncovers more
diversity across the detectable range of sequence identities relative to NCBI nr (blue). (d) The PETase
reaction which underpins the high-throughput yeast-based halo assay. Yeast expressing either control
(IsPETase) or candidate enzyme targeting the PET substrate BHET were grown on agar plates to create
a white halo which is quantified as pixel intensity (shown as pseudocolored), before (open circle) and after
washing (black circle) around the colony (cyan outline) (Extended Data Fig. 3a,b). High-performance
liquid chromatography (HPLC) and mass spectroscopy suggest that the “halo product” is O,O′-(ethane-
1,2-diyl) bis(oxy(2-hydroxyethyl)carbonyl)terephthalate (Extended Data Fig. 3e,f). (e) Phylogenetic
tree of sampled candidate PAZy that were synthesized and experimentally screened. Nodes are colored
based on 48 hour halo formation activity in surface-displayed expression. The gray-highlighted clade
was re-sampled for additional sequences. (f) Heatmap of select enzyme halo formation activity over
time, quantified in surface-display and secreted systems (Extended Data Fig. 4a). (g) Quantitative
validation of candidate high-activity PETadex -Logan enzymes by HPLC. The bars show the percentage
of product formed relative to the activity of IsPETase (halo product, MHET) or FAST-PETase (TPA).
Logan enzymes demonstrate product formation exceeding that of IsPETase and FAST-PETase.
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10

Figure 3: Identification and reactivation of HHV-6 in large-scale RNA-seq datasets. (a)
Input query to Logan-Search for two abundant HHV-6 genes (U83 and U91) and filtering criteria for
human RNA-seq BioSamples. (b) K-mer coverage analysis of 13 identified HHV-6–positive BioProjects,
including 9 with no prior HHV-6 annotation (circles). Triangles indicating previously annotated datasets
(Serratus and HHV6 paper). (c) Annotation of newly discovered HHV-6–bearing BioSamples, including
gastrointestinal cancers, tumor-infiltrating lymphocytes (TILs), chimeric antigen receptor (CAR) T-cell
products, organoids, and patient-derived xenografts (PDXs). (d) RNA-seq analyses of TIL cultures
(PRJNA901910). Values indicate HHV-6 RNA abundance (counts per million, CPM) out of the full
library, reflecting HHV-6 reactivation from cultured T cells. (e) ChIP-seq analyses of TIL cultures
(PRJNA901909). Values reflect the HHV-6 DNA abundance for two donors in H3 acetylation chromatin,
reflecting coverage across the full viral contig.
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Figure 4: Expanding the Known Universe of Proteins, Plasmids, and Viral Elements (a) Bar
plot labeled “Total” shows the total number of proteins extracted from Logan contigs, compared to other
databases, and bar plot labeled “Clustered” shows the same set of proteins but clustered at 50% identity.
(b) Expansion of Obelisks requiring circular contigs with full-length Oblin-1 proteins, identified in Logan
(yellow), relative to the initial petabase-scale search [9] (blue). Total sequences and species (clustered cen-
troids of Oblin-1) are shown. (c) Number of P4 satellites found in Logan contigs (types A+B) compared
to those in RefSeq (types A+B+C). Types A, B, C refer to the number of core components detected by
SatelliteFinder (Methods): A = all 7, B = 6 out of 7, C = 5 out of 7. (d) Geographical distribution
of plasmids detected over 2,095,914 samples with geolocation data. Circle areas are proportional to the
number of distinct plasmid clusters per region. For visual clarity, spatially close samples were grouped
using DBSCAN, and circles are placed at the coordinates of the corresponding cluster medoids. The
map uses the Loximuthal projection. (e) Number of distinct plasmid cluster representatives detected
over time. Counts (y-axis) are shown in 120-day intervals (x-axis). (f) Comparison of accessory gene
repertoires in plasmids from environmental samples vs. cultured isolates. Plasmids from isolates are
comparatively enriched for antimicrobial resistance (AMR) genes, whereas plasmids from environmental
sources are enriched for antimicrobial peptides (AMPs). Functional enrichment (x-axis) was quantified
as the ratio of gene density (genes per megabase) for a given function (AMR or AMP) between the two
plasmid groups. (g) Relative Faith’s phylogenetic diversity of selected replicases and relaxases encoded by
plasmids identified in Logan (yellow) and those retrieved from PLSDB (blue). The phylogenetic diversity
fold change, indicated by numbers to the right of the bars, represents the ratio of the diversity across all
plasmids (Logan and PLSDB combined) to the diversity in PLSDB plasmids alone.
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Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper. Accurate structure prediction of509

biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, May 2024.510

[62] Robert C. Edgar. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of511

sequence homology and phylogeny. Nature Communications, 13(1):6968, November 2022.512

[63] Sean R. Eddy. Accelerated Profile HMM Searches. PLoS Computational Biology, 7(10):e1002195,513

October 2011.514

[64] Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams,515

Arndt von Haeseler, and Robert Lanfear. Iq-tree 2: New models and efficient methods for phylo-516

genetic inference in the genomic era. Molecular Biology and Evolution, 37(5):1530–1534, February517

2020.518

[65] Gabriel Foley, Ariane Mora, Connie M Ross, Scott Bottoms, Leander Sützl, Marnie L Lamprecht,519
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3 Methods596

3.1 Performance-optimized and cloud-accelerated genome assembly of all SRA ac-597

cessions598

We designed a cloud architecture to perform SRA-wide genome assembly efficiently and in parallel. Fig-599

ure 1b describes the workflow. Briefly, a Docker container processes each SRA accession independently:600

1) raw reads of an accession are downloaded from a cloud mirror of the SRA, 2) a conservative assembly601

(unitigs) of the accession is made from the reads, 3) a consensus assembly (contigs) is made from the602

unitigs, and 4) both the unitigs and contigs are compressed and uploaded to a public repository.603

We executed this system at SRA-scale using cloud resources. Containers are executed in parallel over604

tens of thousands of cloud computers through a container orchestration system, and a set of dashboards605

were deployed to monitor the execution. Extended Data Fig. 1 shows some key statistics of the execution.606

We optimized the system to use as many CPU cores in parallel as possible, as opposed to running it607

at smaller scale over a longer period of time, to take advantage of lower computation costs and higher608

availability of cloud instances during night time.609

Using this system we performed genome assembly over the entire SRA and report results for each610

accession in two forms: unitigs (non-branching paths of the reads de Bruijn graph, here k = 31) and contigs611

(non-branching paths of the de Bruijn graph after simplification steps). The rationale for this dual set of612

results is to allows researchers to choose between a near-lossless but fragmented representation (unitigs)613

and a more lossy but more contiguous one (contigs). Unitigs are shorter sequences that preserve almost614

all the genetic variation from the original reads, including alternate alleles involving single nucleotide or615

indel variants. Unitigs are ideal for sensitive, k-mer-based searches where finding even minor variants is616

critical. Contigs, on the other hand, are the more contiguous, consensus assemblies. To obtain contigs,617

the assembler extends the unitigs by collapsing biological variations and removing any remaining putative618

technical sequencing error. It makes a “best guess” of the errors to remove and major allele to collapse into619

a single, representative path. Contigs are optimized for downstream applications like protein prediction620

and gene identification, where sequence contiguity is more important than preserving minor variants.621

Dataset Type Reads # accessions Index/Seqs Compress.

Sourmash Branchwater Index 1.4 Pbp 682,688 7 TB 191×
MetaGraph-SRA Index 3.3 Pbp 1,891,328 7 TB 473×
Pebblescout-SRA Index 3.7 Pbp 4,141,058 171 TB 21×

NCBI SRA (Dec 2023) Raw data 50.3 Pbp 27,764,168 19 PB 3×
Logan, Unitigs (v1) Assembly 48.3 Pbp 27,311,279 2 PB 24×
Logan, Contigs (v1.1) Assembly 44.1 Pbp 26,788,829 315 TB 140×
Logan-Search Index 43.9 Pbp 23,404,655 1 PB 44×

Table 1: Size of existing indexed data vs Logan. The MetaGraph-SRA and Pebblescout-SRA rows
refer to all SRA accessions indexed by MetaGraph and Pebblescout respectively [4, 6]. The NCBI SRA
row refers to all public accessions from the SRA as of December 10th 2023. The Reads column refers
to the number of bases in SRA reads for the considered dataset. The Index/Seqs column indicates the
sum of all sub-indices sizes (for Branchwater [8], MetaGraph and Pebblescout) or the size of compressed
sequences for all accessions (for SRA and Logan). The “Compress.” column gives the compression ratio
between the size of reads (Reads column) as if each base was stored using 8 bits, and the Index/Seqs
column.
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3.1.1 Input data622

We selected all public samples from the Sequence Read Archive on December 10th, 2023, with read length623

above 31 bp. Accessions with shorter reads than 31 bp would yield no usable k-mers in the downstream624

assembly step. The list of accessions was obtained from the NCBI SRA metadata table, using Amazon Web625

Services (AWS) Athena with SQL query filter: WHERE consent = ’public’ and avgspotlen >= 31.626

This resulted in 27,764,168 accessions totalling 50,304,659,857 bases in reads. In the rest of this manuscript627

we refer to this dataset as ‘the SRA’, although the current-day SRA has since been updated with new628

samples.629

3.1.2 Assembly tools630

Unitigs were constructed using a modified version of Cuttlefish2 [38] (commit 9401ef5 of forked reposi-631

tory github.com/rchikhi/cuttlefish), augmented to record approximate mean k-mer abundance per632

unitig. We also modified the k-mer counting method KMC3 [39] integrated inside of Cuttlefish2 to633

stream SRA files directly through a piped call to fasterq-dump with parameters --seq-defline ’>’634

--fasta-unsorted --stdout, avoiding a prior decompression step to disk, and discarding on the fly635

FASTQ headers and quality values.636

The original version of Cuttlefish2 did not record any abundance value. We modified Cuttlefish2 to637

record abundances values per k-mer during construction, then to report the average abundance over all638

k-mers of a unitig. However, the reported per-k-mer abundances were approximated with two heuristics:639

1) due to a technicality during graph construction, abundances of k + 1-mers were recorded, hence the640

abundance of each k-mer was obtained by summing the abundances of all the k + 1-mers it appeared in,641

then dividing the sum by two. 2) To save memory during graph construction, abundances were stored642

in a 8 bits encoding scheme that maintains an error of not more than 5%, with a maximum abundance643

value of 50,000. To remove some of the likely sequencing errors, k-mers seen only once in an accession644

were discarded from unitigs.645

Unitigs were given as input to Minia3 [40] (commit 71484e8 of github.com/GATB/minia), which per-646

forms de Bruijn graph simplifications and error-correction following closely the heuristics designed by647

the SPAdes assembler [41], a tool well-established for its high accuracy and low rate of misassemblies in648

metagenomic contexts. We expect Minia3 contigs to share a similar accuracy profile, since the modifi-649

cations focused primarily on performance optimization and memory frugality, rather than altering the650

fundamental algorithms responsible for assembly quality. Minia3’s accuracy was independently validated651

in [42, 43, 44]. The resulting contigs that are longer than 150 bp and are connected to at least one other652

contig were reported. For both unitigs and contigs, the FASTA headers contain link information (in the653

format of BCALM2 [45] output) that enable to reconstruct the assembly graph in GFA format. In the654

unitigs and contigs file of an accessions all 31-mers are distinct, by construction.655

These tools were selected for their memory and running time frugality. In addition, Minia3 was656

chosen for also its conservative approach to graph simplification and hence higher retention of sequence657

complexity. A comparison with two other state-of-the-art assemblers (Penguin [46], rnaviralSPAdes [47])658

is provided in Extended Data Fig. 1, showing that substantial cloud computing costs were saved by this659

pipeline.660

To compress unitigs and contigs, we developed and applied a novel block variant of the Zstandard661

algorithm [48] (https://github.com/asl/f2sz). The compressor creates FASTA-aligned blocks allowing662

for faster random access to any subset of contigs. It remains compatible with the ubiquitous zstd -d663

and zstdcat decompression command line tools.664

3.1.3 Cloud infrastructure665

For SRA-scale assembly we have a set up a cloud infrastructure on Amazon Web Services (AWS), to666

perform assembly of each SRA accession in a fully parallel fashion. In brief, the infrastructure is based667
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on a Docker container executing a set of Python scripts responsible for calling child programs for unitig668

and contig assembly and validation. The AWS Batch execution system handles scheduling of containers669

across a pool of cloud computers (AWS EC2 instances). Each container is executed independently for670

each SRA accession. Each instance is equipped with temporary network storage (EBS). The number of671

CPUs, RAM, and storage for each job were set according to size of input reads measured in megabases.672

The Batch instances pool was set to the c6g and c7g families (AWS Graviton-based instances), with sizes673

4xlarge and above to target larger instances and thus limit the number of instance creation API calls.674

Executions were monitored primarily through live dashboards on AWS CloudWatch and Batch ser-675

vices, as well as a DynamoDB database recording runtime and assembly statistics for each accession.676

Global statistics such as number of processed accessions and total size of raw data assembled were recorded677

in real-time by sending messages from each container to a global partitioned database. Summary metrics678

were aggregated, enabling to monitor computation speed during execution and potentially stop all jobs679

should metrics fall behind projected estimates.680

To limit the number of simultaneous queries to NCBI servers, two mechanisms were implemented:681

(1) raw .sra files were directly downloaded from the AWS Registry of Open Data cloud mirror of the682

NCBI SRA to a cloud instance in the same data center (us-east-1), and (2) special .sra files containing683

alignments to RefSeq were handled by downloading references from a S3 mirror of RefSeq. Aligned .sra684

file containing references from the NCBI WGS database were discarded in the later runs, but some were685

processed in the earlier runs before we identified that they incurred (rate-limited) queries to NCBI servers.686

Results (unitigs, contigs) have been deposited in a public repository. Detailed instructions to download687

the data are provided here: https://github.com/IndexThePlanet/Logan.688

While the cloud infrastructure used to construct Logan is solely intended for internal usage due to689

its high execution costs, its source code is publicly available at https://gitlab.pasteur.fr/rchikhi_690

pasteur/erc-unitigs-prod/.691

3.1.4 Assembly results692

In total 27.3 million accessions were assembled into unitigs, representing 96% of the SRA in size as of693

December 2023. Some accessions resulted in too many unitigs to fit the assembly graph in memory, hence694

were not further assembled into contigs at this time. 26.8 million accessions were assembled from unitigs695

to contigs, representing 88% of the SRA in size. The total cloud computation time (unitigs and contigs)696

was around 30 million CPU hours (1).697

Assembly contiguity statistics for the Logan contigs are reported in Extended Data Fig. 1. Contigs698

for Whole-Genome Sequencing/Amplification (WGS/WGA) accessions are generally longer than those of699

RNA-Seq accessions or other sequencing types, as expected by the longer sequenced molecules. Note that700

non-circular contigs shorter than 150 bp that are isolated nodes in the assembly graph were discarded by701

the assembler as they were more likely to be artifacts than actual biological material.702

Across Logan, standard assembly metrics were computed using seqkit [49] and stored into a database703

(number of unitigs, contigs, N50 values, total length of assemblies, longest assembled sequence per acces-704

sion). In addition, FASTA file sizes before and after Zstandard compression were also recorded. All these705

statistics were stored on a AWS DynamoDB database then exported to a public repository (S3 bucket) in706

the Parquet format (https://github.com/IndexThePlanet/Logan/blob/main/Stats-v1.md), enabling707

users to link this database with other NCBI SRA databases such as STAT [5] or SRA metadata.708

3.2 Shallow and deep homology search in Logan contigs709

For translated-protein searches over all Logan contigs, DIAMOND2 v2.1.9 [11] was run with parameters710

-b 0.4 --masking 0 -s 1 --sensitive to balance speed and sensitivity. The query sequence(s) were711

provided as indexed references to DIAMOND2, and Logan contigs were streamed accession by accession712

as queries. For nucleotide searches over all Logan contigs, minimap2 v2.28 [50] was run with parame-713

ters -x sr --sam-hit-only -a to return all contig sequences and their alignment, optimizing for short714
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matches. A custom cloud pipeline using AWS Batch was set up to perform those searches, which each715

take approximately 11 hours on 60,000 vCPUs. The pipeline and infrastructure source code is available716

at https://gitlab.pasteur.fr/rchikhi_pasteur/logan-analysis.717

3.3 SRA-wide public search engine718

We developed Logan-Search, a publicly available search engine able to approximately locate a queried719

DNA sequence among 23.4 million accessions. Logan-Search performs k-mer-based queries. A k-mer is a720

word of length k (k = 31 is used in this context). Within minutes, Logan-Search identifies the accessions721

to which each k-mer from the queried sequence is associated. This enables us to provide a similarity722

metric between the query and each indexed accession.723

Constructing the Logan-Search engine required to index all k-mers from Logan unitigs, in order to offer724

a way to instantaneously detect to which sample a k-mer belongs to. We built this index using kmtricks [51]725

(kmtricks-logan tag at github.com/tlemane/kmtricks) and kmindex [52] (v0.5.3). Computations726

were performed on Microsoft Azure cloud platform, using an Azure Batch Pool consisting of 625 virtual727

machines (VMs) of type Standard D32d v5. The workload was divided into approximately 45,000 tasks728

used to construct partial indexes, which were subsequently merged to produce the final index. A small729

fraction of tasks requiring larger memory capacity were executed on Standard D96d v5 instances. In730

total, the computation took around 10 days to complete.731

In total, approximately 2 × 1015 k-mers were indexed. The accessions were separated into groups732

on the basis of their library source (e.g. genomic, transcriptomic, metagenomic, metatranscriptomic,733

etc...) and of their superkingdom phylogeny classification, obtained from the NCBI STAT database [5].734

Exceptions were made for human and mouse accessions, which were classified separately. The kmindex735

tool builds Bloom Filters [53], with a non-null false positive rate, tuned to be approximately 0.005% by736

setting parameters adapted to the size of each indexed dataset and by using the Findere algorithm [54].737

The overall size of the index is approximately one petabyte, stored on disk. At query time, only specific738

target sub-parts of the index are mapped on RAM. For a thousand basepair sequence query, results are739

obtained in approximately 6 minutes, using 12 small 4-vCPUs virtual machines.740

The kmindex tool retrieves accessions containing sequences similar to a query, based on the percentage741

of k-mers from the query existing in the accession. On top of those results, we developed a visualization742

interface based on kmviz (https://github.com/tlemane/kmviz) that offers several features:743

• All metadata from SRA associated to each accession is made available. The interface enables744

researchers to visually retrieve those metadata: geographic localization of accessions on a worldwide745

map, and drawing highly tunable plots from discrete or textual attributes.746

• A summary of the query is generated using a large language model (GPT-4o) [55], based on the747

SRA metadata associated to top hits, allowing users to quickly assess potentially relevant contextual748

information, such as organism or location.749

• Logan-Search natively returns a list of accessions that contain the query sequence, but it does not750

identify the specific sequence within each accession that matches the query. To fill this gap, a751

microservice based on the back to sequences tool [56] is used to retrieve, on a per-accession basis,752

the contig or unitig sequences that match the query. Additionally, a BLASTn [57] alignment using753

default parameters is performed between the query and the extracted contigs or unitigs; it completes754

instantly as both aligned sequences are typically kilobase-sized.755

3.4 Pilot plastic active enzyme search756

In a pilot experiment to assess the feasibility of a plastic-active enzyme search, we retrieved 102 publicly757

available, experimentally validated, polyethylene terephthalate (PET)-degrading A/B hydrolases from758

the PAZy database (sequence accessed Aug 26, 2024 from GenBank or PDB accessions [18]). These759
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reference sequences were supplemented with 12 previously computationally identified PETases and 74760

MGnify sequences with predicted structures similar to IsPETase, found with Foldseek [58, 59, 13]. To761

reduce redundancy, these 188 enzymes were clustered at 90% aaid (‘USEARCH v11.0.667 i86linux32‘,762

-cluster fast -id 0.90), resulting in 153 representative sequences [60].763

We focused on 56 sequences related to IsPETase by at least 30% aaid (USEARCH v11.0.667 i86linux32,764

-cluster fast -id 0.30) [60]. We filtered Logan retrieved contigs to ”IsPETase-like” sequences with765

high identity and confidence, resulting in 230,804 hits (‘DIAMOND2 blastx v2.1.9‘ as above; e-value766

< 1e−8 and aaid > 40%) [11].767

As we were interested in potentially active enzymes with intact catalytic cores, we generated a multiple768

structure alignment of IsPETase-like reference sequences. Structures were predicted using AlphaFold3 and769

aligned with Muscle3D (v5.1.linux64, -align) [61, 62]. The amino acids of the subalignment containing770

the conserved core were extracted manually and were used to generate a custom HMM (‘HMMER v3.4‘;771

esl-reformat stockholm, hmmbuild) [63]. Next, we identified stop-stop ORFs (‘EMBOSS v6.6.0.0‘;772

getorf) and filtered for those with at least 90% coverage of the core HMM (‘HMMER v3.4‘; hmmsearch),773

resulting in 2,272 unique sequences with a maximum e-value of 3.8e−43.774

To infer the evolutionary relationships of these Logan hits, we clustered them at 95% aaid (853 rep-775

resentative sequences), and used IQ-TREE2 with 1000 bootstrap iterations to generate a tree (v2.4.0, -b776

1000) [64]. Ancestral reconstruction of these sequences was performed with GRASP command-line [65],777

resulting in 175 ancestral sequences. For initial synthesis and activity testing, 161 candidate sequences778

from Logan were manually chosen over the tree to encompass an even sequence diversity. Twenty-one779

ancestrally reconstructed sequences were included, as well as six distantly related sequences from MGnify780

as expected negative controls, and 11 known PETases as positive controls, amounting to 199 sequences781

in total.782

After the PETase activity was measured for the initial round of synthesized sequences (see Section 3.8)783

the phylogenetic tree was re-sampled in areas of relatively enriched PETase activity through manual784

identification of closely related and sister sequences (n = 13) for additional in-vitro screening.785

3.5 Plastic active enzyme homolog expansion786

As the initial search seed, we used the PAZy database of experimentally validated plastic-active enzymes787

(Accessed Dec 19, 2024) [18]. All publicly available PAZy sequences were retrieved from GenBank by788

accession (213/245, 86.94%). To generate a PAZy phylogenetic network (Extended Data Fig. 2a), we789

performed all-vs-all alignment (usearch v11.0.667) between sequences (213 nodes), and retained significant790

alignments (3,195 edges, ≥30% amino acid identity and e-value < 1e−5). The sequences clustered into 42791

graph components, of 11 structurally distinct protein folds (CATHdb [21]), with minimum-spanning tree792

edges shown. The Alpha/Beta Hydrolase protein family are the most represented, with 170/213 (79.8%)793

of the sequences and 28/42 (66.7%) of the components.794

Notably, Alpha/Beta hydrolases, amidases, beta-lactamase, and arylesterase protein-fold families have795

reported activity for more than one plastic substrate, and 16 individual sequences have reported activity796

for more than one plastic substrate. Thus plastic degrading activity is a polyphyletic trait, and suggests it797

may be an incidental, or off-target function of these enzymes, which broadly function to hydrolyze organic798

molecules such as lipids, esters, or carbohydrates. This suggests these enzymes and their homologs may799

contain additional plastic substrate activity.800

To identify PAZy homologs, we queried the sequences into the NCBI non-redundant protein database801

(‘nr‘, accessed: 2024-12-27) [10] using DIAMOND2 (--very-sensitive) [11] which retrieved 5,593,290802

unique sequences (e-value < 1e−5). Of these, 2,735,790 sequences contained a HMM match (‘hmmscan‘;803

< 1e−5 and 95% model coverage) against a PAZy protein domain (Pfam models: PF00082, PF00089,804

PF00144, PF00561, PF01083, PF01425, PF01522, PF01674, PF01738, PF02983, PF03403, PF03576,805

PF06850, PF07224, PF07732, PF09995, PF10503, PF10605, PF12146, PF12695, PF13472, PF20434,806

PF21419, PF24708). Incidentally, we did not include a model for Cyclase-like domains, which resulted in807
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zero novel sequences being called.808

Next, we queried these centroids against our newly created Logan assemblage (26.8 million datasets,809

50.0 Pbp, 11.5 hours), as per Section 3.2, and retrieved an additional 6.5 billion hits, (DIAMOND, evalue810

< 1e−8), which were filtered as above.811

3.6 Yeast strains and PETase expression vectors812

All yeast strains generated in this study are derivatives of DHY213 [MATa CAT5(91M) SAL1 MIP1(661T)813

HAP1 MKT1(30G) RME1(INS-308A) TAO3(1493Q) leu2∆0 his3∆1 ura3∆0 met15∆0 ], a modified ver-814

sion of BY4741 [66] with increased sporulation efficiency, mitochondrial stability and efficient biosynthetic815

gene expression [67].816

PETase encoding genes were expressed as surface displayed or secreted constructs from episomal817

plasmids derived from the pJC170 backbone [68] (gift from Jef Boeke) modified to contain an additional818

marker (natMX ) and the surface display or secretion expression cassettes. For surface display, PETase819

encoding genes were fused with the Ccw12 secretion signal (amino acid 1 to 19) on their 5’ ends and to820

a flexible [AGSAGSAAGSG] linker, a Myc tag and the remainder of the Ccw12 amino sequence (amino821

22 to 133) on their 3’ ends. For secretion, the architecture of the construct was the same as for surface822

display but without the cell wall anchoring domain of Ccw12 (amino 22 to 133). Finally, the empty823

vectors additionally contain a placeholder sequence with two inverted BsaI restriction sites between the824

Ccw12 secretion signal and the linker sequence in order to facilitate backbone cleavage for recombination825

or golden gate cloning. The sequence for these plasmids (pRLK152 for surface display; pRLK153 for826

secretion) is provided in the supplemental material.827

3.7 Synthetic DNA cloning828

PETase encoding genes were synthesized by Twist Biosciences (USA) and contained the standard Twist829

adapters and 40 base pairs of homology on the 5’ (5’ CGCTTCTATCGCCGCTGTCGCAGCTGTCGCTTCT-830

GCCGCA) and 3’ (5’ GCGGGTTCTGCTGGTTCTGCTGCTGGTTCTGGTGAATTTG) ends to fa-831

cilitate in vivo recombination in yeast. Between 10 and 20 ng of synthetic DNA was transformed in832

yeast using the standard lithium acetate method along with 25-50 ng of plasmid backbone (pRLK152833

or pRLK153). Yeast transformants were selected on synthetic medium containing clonNAT antibiotic834

and lacking uracil (SD/MSG-ura+ clonNAT: 1.7 g/L yeast nitrogen base without amino acids without835

ammonium sulfate, 1 g/L monosodium glutamate, 20 g/L dextrose, 20 g/L agar, 100 µg/mL clonNAT).836

The pool of transformants for each construct was maintained as a single colony on a colony array.837

3.8 BHET halo assay838

To prepare assay plates, a 1 M BHET (CAS# 959-26-2, Sigma-Aldrich) solution was prepared by diluting839

BHET flakes into 100% DMSO and heating slightly until complete dissolution. The BHET solution840

was then added to YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L dextrose, 20 g/L agar,841

100 µg/mL clonNAT) prior to pouring Omnitray plates (ThermoFisher). Plates were kept at room842

temperature to prevent BHET recrystallization.843

Yeast strains expressing surface displayed or secreted IsPETase were pinned in 384-array format (4844

colonies per construct) onto YPD+BHET plates using a colony pinning robot (Singer Instruments, United845

Kingdom) and incubated at 30°C for up to 5 days. After incubation, yeast colonies were washed off the846

plates using water and a cell spreader tool to reveal a white halo or a clearing (loss of opacity). Each plate847

was imaged before robotic pinning as well as before and after colony washing (spImager, SP Robotics Inc,848

Canada).849

BHET halo measurement was implemented in R as follows: First colonies were identified using the850

gitter package and the resulting colony mask was applied to the plate image before pinning (background851

image) and after colony washing (halo image) to extract pixel coordinates corresponding to each colony852
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area in the image. Pixel intensity was extracted from each image using the imager package and the median853

pixel intensity for each colony area was then determined in the halo image and the median pixel intensity854

for the same colony area in the background image was subtracted. To normalize pixel intensity values855

across plates, the average median pixel intensity obtained across 4 replicate colonies containing the empty856

surface display or secretion plasmids present on each plate was subtracted from all colony median pixel857

intensity values on the given plate.858

3.9 High performance liquid chromatography859

Isogenic clones were isolated from each colony with activity in the BHET halo plate assay and grown860

to saturation in YPD containing 100 µg/mL cloNAT at 30°C. The saturated culture was then diluted861

1000-fold in YPD+cloNAT and grown for 24 hours at 30°C. 95 µl of culture was transferred into a 96-well862

plate prior to adding 5 µl of 500 mM or 250 mM BHET in 100 % DMSO. After 17 hours of incubation863

at 30°C, an aliquot of each reaction was diluted 10 or 20 times in 100% DMSO for reactions in 12.5 and864

25 mM BHET respectively, centrifugated for 2 minutes at 3000 rpm and the supernatant was stored at865

-20°C.866

Supernatants were fractionated on reversed-phase HPLC using an HP1050 system (HP/Agilent, USA)867

mounted with a Zorbax SB-C8 column (4.6 x 150 mm, 5 µm). The column was maintained at 22-24°C.868

Analytes were eluted over 37 minutes with 0.1% formic acid in water (aqueous solvent) and 0.1% formic869

acid in acetonitrile (organic solvent) using the following gradients: 1 to 5% organic (vol/vol) over 20870

minutes at 0.8 ml/min, 5 to 52.5% organic (vol/vol) over 14 minutes at 0.8 ml/min, 52.5% to 100%871

organic (vol/vol) and 0.8 to 3.0 ml/min over 0.2 min, 100% organic (vol/vol) for 0.8 min at 3.0 ml/min,872

100% to 1% organic (vol/vol) and 3.0 to 0.8 ml/min over 1.0 min, and 1% organic (vol/vol) for 0.2873

minutes. Detection wavelength was 240 nm with a 4 nm bandwidth. Peak identities were established874

using commercial TPA ≥98% purity (CAS: 100-21-0, Sigma-Aldrich), MHET ≥95% purity (CAS: 1137-99-875

1, Advanced ChemBlocks), and BHET ≥95% purity (CAS: 959-26-2; Sigma-Aldrich). Data analysis was876

performed in R using the chromatographR package and analyte abundance was determined by measuring877

absorbance peak area at 240 nm. TPA and its ester derivatives (BHET and MHET) have similar extinction878

coefficients at 240-244 nm [69] and purified BHET dimer (see below) consistently gave peak areas that879

were 3.5 times smaller than pure BHET across a range of analyzed amounts (Extended Data Fig. 3 f-g).880

Therefore, product formation was expressed as a ratio between the peak area of the enzymatic reaction881

products TPA, MHET and 3.5-times the peak area of BHET dimer, relative to the sum of all peaks882

(TPA, MHET, 3.5 times BHET dimer, and BHET). Finally, the relative abundance of each analyte was883

normalized to the cell concentration at the time of BHET addition in each reaction determined using a884

Beckman-Coulter Counter Z1 equipped with a 100 micron aperture tube.885

For BHET conversion measurement from halo zones on YPD+BHET agar plates, colonies were washed886

off of the plates and white halos or clearings were excised using a pipet tip with a 1-2 mm diameter. The887

agar plugs were soaked in 250 ul of 100% DMSO for 24 hours at room temperature prior to centrifugation888

at 15,000 rpm for 3 minutes. The supernatant fraction was further diluted 5-fold prior to HPLC analysis889

(see above) or LC-MS (see below). Samples for LC-MS analysis were prepared in low-bind tubes and890

centrifuged for 20 minutes at 15,000 rpm prior to analysis to prevent any transfer of large particles into891

the instrument.892

3.10 BHET dimer purification893

20 µmoles of BHET from a 1M BHET stock solution (CAS: 959-26-2, Sigma-Aldrich) which contained894

BHET dimer (O,O′-(ethane-1,2-diyl) bis(oxy(2-hydroxyethyl)carbonyl)terephthalate) as impurity was895

fractionated by HPLC using the aforementioned fractionation protocol. Fractions between 28-29 min-896

utes and 33.9-35 minutes were collected from the waste line of the instrument prior to being dried at897

60°C for 24 hours to isolate BHET and BHET dimer, respectively. The weight of the dried fraction was898

then measured on a high-precision scale and the dried fraction was resuspend in 100% DMSO to a final899
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concentration of 1 M. Fraction purity was verified by HPLC analysis across a range of concentrations (1900

mM – 125 µM, Extended Data Fig. 3e-f).901

3.11 Liquid chromatography - Mass spectrometry analysis902

Halo zones from under yeast colonies were extracted from agar plates as described above. An Agilent903

1260 Infinity II with 6545 LC/QTOF mass spectrometer was used to analyze the samples in positive904

ionization mode with Dual AJS electrospray ionization (ESI) equipped with Agilent ZORBAX Eclipse905

Plus C18 column (2.1x50mm, 1.8-µm particles) and ZORBAX Eclipse Plus C18 guard column (2.1x5mm,906

1.8-µm particles). LC parameters were as follows: injection volume 2µL preceded with a 4µL needle wash907

with sample, autosampler chamber temperature 20°C, column oven temperature 40°C. Mass spectrometry908

parameters were as follows: gas temperature 320°C, drying gas flow 10 L/min, nebulizer 35 psi, sheath909

gas 350°C at 11 liters per minute, VCap 3500V, Nozzle voltage 1000V, fragmentor 125V, skimmer 65V.910

The solvent gradient with a flow of 0.5 ml per minute started with 99% mobile phase A (Optima LC/MS911

H2O+0.1% Formic Acid, Fisher Chemical P/N LS118-4) and 1% mobile phase B (Optima LC/MS Ace-912

tonitrile+0.1% Formic Acid, Fisher Chemical P/N LS120-4), kept for five minutes, increased linearly to913

100% B at 5 minutes, followed by five minutes at 100% B, then back to 1% B over 2 minutes and finally914

held at 1% B for an additional 5 minutes. The post-run time was two minutes (instrument conditioning915

at 99% mobile phase A). The raw data was analyzed using Agilent MassHunter Qualitative Analysis 12.0.916

Counts of molecules with mass-to-charge (m/z) ratios specific to MHET, BHET and BHET dimer were917

collected, and the area under the curve of each peak was calculated to determine the abundance of each918

molecule. MHET and BHET dimer abundance was expressed relative to spectral counts obtained for919

BHET in each sample. A putative BHET dimer structure was inferred from the m/z ratio.920

3.12 Discovery and characterization of HHV-6 reactivation921

For all HHV-6 analyses, we utilized Logan-Search using the AF157706 reference genome and transcrip-922

tome, reflecting the HHV-6B strain, which is endemic outside of Sub-Saharan Africa. For selecting HHV-6923

transcripts to query in Logan-Search, we prioritized the HHV-6 genes annotated as ‘late’ that encode pro-924

teins essential for viral assembly and release of particles. In doing so, our search prioritized libraries925

containing viral expression consistent with full reactivation (rather than latency or early reactivation).926

The full RefSeq transcripts for U83 and U91 were input to Logan-Search and queried against the full set927

of human RNA-Seq datasets. Once these accessions were identified from the full search, individual SRR928

files were downloaded and further analyzed for modality-specific analyses. For bulk RNA-seq libraries,929

kallisto[70] in quant mode was used with the HHV-6 transcriptome as previously described [22]. For930

single-cell analyses of the organoid system, processed human counts matrices were downloaded from GEO931

and further annotated with the kallisto bus single-cell counts for HHV-6. For ChIP-seq libraries, raw932

.fastq files were re-mapped to the HHV-6 reference genome using bwa [71] with downstream analyses933

conducted using GenomicAlignments. Metadata, including the clinical trial identifier, input cell type,934

and donor identity, was pulled from the SRA metadata annotations per BioProject.935

To mitigate sources of confounding for downstream analyses (i.e., errant, non-HHV-6 detection), we936

performed a series of stringent filters for read quantification. First, to minimize the possibility of multi-937

mapping transcripts, we excluded the HHV-6 DR1 transcript that possesses high homology with human938

transcripts [22]. Second, to mitigate the possibility of HHV-6 contamination (either environmental or939

index hopping), we a limit of detection per library requiring (a) a minimum of 3 unique genes and (b)940

minimum of 10 unique sequencing reads to call a library positive. Finally, for libraries with high viral941

reactivation, we verified single nucleotide diversity comparing mutations with a minimum cover of 10x942

per library and allele frequencies exceeding 90% in one library and less than 10% in the other Extended943

Data Fig. 6d). Libraries meeting these criteria were further processed to estimate the viral RNA counts944

per million defined as the non-DR1 HHV-6 transcripts divided by the total sequencing reads per library.945
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Hence, we emphasize that these additional measures yield a conservative estimate of HHV-6 abundance946

in these libraries.947

3.13 Gene calling and protein clustering948

Protein-coding genes were predicted in all assembled Logan contigs using Prodigal [72] (version 2.6.3) in949

metagenomic mode (-p meta). The predicted proteins were then divided into ’human’ vs. ’other’ based950

on SRA metadata associated with their contigs through their SRA accessions and into ‘complete’ vs.951

‘partial’, based on Prodigal’s output. In all, three subsets were obtained: 31.2 billion “human-complete”,952

109.4 billion “other-complete”, and 304.7 billion “human-partial” protein sequences. We excluded the953

“other-partial” set because partial predictions are more error-prone and because this set alone contained954

nearly one trillion sequences that did not cluster well.955

These subsets were then clustered using Linclust [73] (commit 62a2ad) on AWS Batch/EC2; the956

input was streamed from Amazon S3 and partitioned into fixed-size line chunks sized to instance memory957

(up to 1.5 billion proteins per chunk). Jobs ran as Batch array jobs on x2gd.metal nodes with a 700G958

split-memory limit (--split-memory-limit 700G).959

Linclust was run in several cascaded rounds [74]. First, we removed near-duplicate protein fragments960

at 90% sequence identity (--min-seq-id 0.9) with target coverage 90% (--cov-mode 1 -c 0.9) until961

convergence, requiring 2, 3, and 3 rounds for the human-complete, other-complete, and human-partial962

sets, respectively. This step yielded 0.154B, 7.4B, and 10.8B clusters, each of which with its representative963

sequence, termed Logan90.964

Next, the Logan90 databases were further clustered at 50% identity with the same coverage criterion965

until convergence, requiring 1, 3, and 2 rounds for the human-complete, other-complete, and human-partial966

sets, respectively. To ensure that dividing sequences into chunks during the final 50%-identity clustering967

rounds (other-complete rounds 2–3; human-partial rounds 1–2) did not prevent the detection of sequences968

belonging to the same cluster, we shuffled sequences between chunks. The final representative sets, termed969

Logan50 databases, contained 0.07B, 3B, and 1.8B sequences, corresponding to overall reductions of 99.8%,970

97.3%, and 99.4%. Altogether, we reduced 445.3B initial sequences to 4.87B representative sequences, a971

total reduction of 98.9%.972

3.13.1 Logan50 clustering enhances protein structure prediction by increasing multiple973

sequence alignments (MSAs) diversity974

To demonstrate the utility of Logan50 for downstream applications, we tested whether they can improve975

protein structure predictions with AlphaFold2/ColabFold [33], focusing on viral proteins whose structures976

are hard to predict with the default ColabFold DB. The Big Fantastic Virus Database [75] (BFVD)977

comprises over 351,000 viral protein structures, generated by augmenting ColabFold default MSAs with978

homologous proteins identified in Logan’s contigs. In the BFVD paper, identification of homologs was979

carried out over the entire 0.9 petabases of Logan contigs. Here, we tested whether the reduced Logan50980

dataset could achieve comparable performance while reducing the search space by approximately 3,500-981

fold compared to using the entire Logan corpus.982

We obtained 100 viral proteins from BFVD, previously characterized by poor-quality MSAs using the983

default ColabFold DB. For each protein, we generated MSAs using MMseqs2 (mmseqs search -a -s 8.5984

--num-iterations 2 --max-seqs 1000) against the other-complete Logan50 database, and compared985

them to the default ColabFold MSAs in terms of MSA quality, measured by the number of effective986

sequences (Neff) with hhmake (Fig. 5b, left) and structural prediction (Fig. 5b, right) quality, measured987

by the pLDDT metric. Protein structure prediction using either default MSAs or Logan50 MSAs was988

done by AlphaFold2/ColabFold (colabfold batch --num-models 1 --model-order 3).989

We observed substantial improvements in both metrics. Average Neff increased from 2.19 (baseline)990

to 4.89 (Logan50 MSAs), while mean pLDDT scores improved from 46.7 (“very low”) to 88.6 (“high”).991

Combining ColabFold and Logan50 MSAs further increased these values to a Neff of 5.18 and mean992
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pLDDT of 89.02, approaching the improvement achieved with the full Logan corpus plus ColabFold993

sequences in the original BFVD paper (mean Neff = 4.39, mean pLDDT = 92.88). Thus, on par significant994

gains in structural prediction can be achieved efficiently using the thousand times smaller Logan50, with995

substantial reductions in computational requirements.996

3.14 Expanding Obelisk Diversity with Logan997

3.14.1 Reconstructing the Original Obelisk Database998

A total of 1,744 Obelisk clusters (80% nucleotide clustering threshold), representing 7,202 circular genomes,999

were taken from the initial Obelisk study [9]. These 1,744 centroid were screened for false positives using1000

several sequence alignment, structural homology and HMM verification steps (Data Availability, Obelisk1001

Data Methods). The final clustering analysis resulted in 1,284 backward-compatible 60% Oblin-1 clusters1002

and 1,965 90% clusters. Each of the 1,284 60% centroids also functioned as a 90% centroid, maintaining1003

consistency in the database. This re-annotated database is designated as ‘Obelisk DB Legacy’.1004

3.14.2 First Obelisk Expansion1005

The Obelisk DB Legacy 1,744 Oblin-1 centroid sequences were used as query sequences for alignment to1006

all Logan contigs using minimap2 (Section 3.2). The results of the Logan search were retrieved and split1007

into circular and non-circular sequences by screening for 30-mer repeats at the ends of the Logan contigs.1008

For circular sequences, the 30-mer repeat was trimmed, yielding 12,690 circular and 312,728 non-circular1009

contigs.1010

Concurrently, the 7,195 Oblin-1 sequences from ‘Obelisk DB Legacy’ were clustered at 95% identity1011

using USEARCH cluster fast, resulting in 2,170 clusters. Using Clustal Omega [76] and HMMER [63],1012

a Hidden Markov Model was constructed from this clustered dataset. The circular sequences from the1013

Logan output underwent ORF calling using EMBOSS getorf with circular genome parameters (getorf1014

-circular Yes), and the resulting ORFs were incorporated into the ‘Obelisk DB Legacy’ HMM model1015

through an iterative search and alignment protocol (Data Availability, Obelisk Data Methods).1016

This procedure resulted in a comprehensive Obelisk database containing 117,838 Oblin-1 proteins,1017

along with a high-quality MSA comprised of 45,170 Oblin-1 sequence alignments. All 117,838 Oblin-11018

proteins were verified to contain the Domain A motif, and were aligned against the BLAST nr database1019

(May 2024) using DIAMOND BLASTp [11] with parameters –masking 0 –unal 1 –sensitive -c1 -k1 -b 51020

–threads 16. This analysis confirmed that no Obelisk sequences produced significant hits in the BLAST1021

nr database, indicating that all sequences represent completely novel genetic elements.1022

3.14.3 Construction of Obelisk DB v11023

The original Obelisk sequences from ‘Obelisk DB Legacy’ were excluded from the 117,838 Obelisk se-1024

quences, yielding 110,643 novel sequences. These novel sequences were aligned to the 1,284 60% centroid1025

sequences from the Legacy Database using USEARCH usearch global with 60% identity threshold (use-1026

arch -usearch global -id 0.6). Sequences that aligned within known 60% clusters were subsequently aligned1027

to the corresponding 90% centroid sequences within their respective 60% clusters using USEARCH use-1028

arch global with 90% identity threshold (usearch -usearch global -id 0.9).1029

This two-step alignment procedure classified all sequences into three distinct categories: (1) members1030

of known 60% and 90% clusters, (2) members of known 60% clusters that represent novel 90% clusters,1031

or (3) members of novel 60% clusters. Using the alignment identities and closest matches identified by1032

USEARCH, sequences were assigned to their appropriate clusters.1033

For novel 60% or 90% clusters, centroid selection prioritized circular sequences, followed by sequence1034

length as the secondary criterion. In clusters lacking circular sequences, the longest sequence was des-1035

ignated as the representative centroid. Metadata, including amino acid sequence, nucleotide sequence,1036
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circularity status, SRA accession numbers, BioProject information, and additional relevant data, was1037

appended to each database entry. The resulting database was designated ‘Obelisk DB Logan v1’.1038

3.14.4 Database Refinement with Logan v1.1 Contigs1039

As Logan contigs were updated from v1 to v1.1, we also updated the Obelisk database. Centroids from1040

the 90% Obelisk clusters were extracted and aligned to Logan v1.1 contigs using minimap2 (Section 3.2).1041

The results were processed using the same methodology described in the previous section. Circular and1042

non-circular sequences were separated, and k-mer repeats were removed following the established protocol.1043

The v1.1 Obelisk database was constructed as follows. Beginning with the original 7,195 sequences and1044

the previously established high-quality 45,000-sequence MSA, the same iterative alignment methodology1045

with tapered e-value cutoffs was executed. Circular sequences were processed first, followed by non-circular1046

sequences. In total 67,454 Oblin-1 sequences were captured.1047

BLAST alignment analysis revealed no significant hits for all proteins except one sequence, which1048

showed a very distant, low e-value alignment. The constructed HMM model was used to query all 67,4541049

sequences, and only 550 Oblin-1 sequences exhibited alignment e-values greater than e-5 to the model;1050

these sequences were retained to preserve diversity. This database was designated ‘Obelisk DB Logan1051

v1.1’.1052

Comparative analysis using DIAMOND BLASTp between versions 1 and 1.1 confirmed that all se-1053

quences present in version 1 were accounted for in version 1.1, despite the total number of Obelisk1054

sequences being approximately halved. This reduction can be attributed to the differences in average se-1055

quence lengths between the two databases. Version 1 had an average amino acid length of 136.7 residues,1056

while version 1.1 had an average length of 186 residues. This increase in sequence length explains the1057

decrease in individual sequence counts, while maintaining comprehensive coverage.1058

The same methodology described in ‘Construction of Obelisk DB v1’ was applied and the complete1059

‘Obelisk DB v1.1’ was assembled with all associated metadata incorporated.1060

3.15 Genomic Expansion of P4 Phage Satellites1061

We first gathered all RefSeq protein sequences for each of the seven core components in a P4 phage satel-1062

lite [34] (Counts: alpha: 1911, ash: 1995, alpA: 2008, Sid: 2041, Delta: 2089, Psu: 1891, Integrase: 2097).1063

Sequences were clustered for each core component individually via UCLUST v11.0.667 cluster fast [60]1064

with identity threshold set to 0.9, then cluster representatives from each of the core components were1065

aligned against Logan v1.1 contigs via DIAMOND BLASTX, as per Section 3.2, with sensitive mode1066

and e-value minimum of 1e-8, for a total of 107.6 million putative P4 satellite contigs. Contigs were1067

next refined with HMMER v3.4 [63], by 6-frame translating each of the putative P4 contigs with seqkit1068

v0.10.0 translate [49], then running HMMER hmmsearch on each of the translated sequence against1069

each of the core component protein databases. A total of 210,895 contigs contained a hmmsearch hit1070

for each core component with a minimum e-value of 1e-5 and a coverage of at least 40% of the database1071

sequence. Finally, these contigs were clustered with MMseq2 v15 [77] with minimum identity threshold1072

of 0.999 and coverage of 0.8, curating 16,215 cluster representatives. Proteins were detected within each1073

representative with Prodigal [72] (version 2.6.3) and P4 phage satellites were detected and characterized1074

with SatelliteFinder v1 [34] with default parameters.1075

For the pangenome curve, proteins from all RefSeq P4 phage satellites of types A, B, or C were clustered1076

with MMseqs2. Clustering was then repeated with each cluster representative and proteins from Type A1077

and B Logan contig containing less than 30 genes (15,653 contigs). Any cluster containing only Logan1078

contigs was considered a new gene family. For the whole-genome reciprocal relatedness (wGRR) analysis,1079

full proteomes from the 16,653 Logan P4 contigs and the 3,437 RefSeq P4 genomes were extracted by1080

detecting the first and last protein in the P4 satellite region. A wGRR matrix was formed by calculating1081

the fraction of bi-directional best hits weighted by the sequence identity for each genome pair in an all-1082

vs-all fashion. Hierarchical clustering was performed on the matrix and the corresponding heatmap was1083
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rendered with with seaborn’s clustermap function, using the Ward clustering algorithm. All scripts can1084

be accessed at https://github.com/kdcurry/P4-logan.1085

3.16 Plasmid identification and clustering1086

We identified 3,885,511 circular contigs (≥ 1% kb) from version 1.0 assembly graphs of 252,507 samples,1087

including bacterial, archaeal, and metagenomic datasets (code available at https://gitlab.pasteur.fr/1088

rchikhi_pasteur/logan-circles). Contigs were processed with tr-trimmer (version 0.1.0, parameters:1089

-c -x -l 31) to discard sequences with low-complexity repeats spanning > 50% of terminal 31-bp re-1090

peats and to trim these repeats from the 3’ ends. To mitigate gene truncation, sequence breakpoints were1091

shifted to intergenic regions (code available at https://github.com/apcamargo/reorient-circular-1092

seq). Plasmids were then identified using geNomad [78] (version 1.8.1, database version 1.7, end-to-end1093

command, parameters: --enable-score-calibration --max-fdr 0.01). To minimize false positives,1094

we only kept plasmids that met two criteria: (1) encode at least one protein matching a HMM from a1095

curated set of 193 plasmid hallmark protein profiles (see Data Availability); (2) encode no more than1096

two proteins matching HMMs of near-universal single-copy orthologs from the BUSCO v5 [79] odb10 [80]1097

datasets of Bacteria and Archaea. Gene prediction was carried out using pyrodigal-gv [81, 78] (ver-1098

sion 0.3.2), and protein sequence matching to HMMs was performed using PyHMMER’s [82] (version1099

0.10.15) hmmsearch function, applying gathering cutoffs to the HMMs of plasmid hallmarks (parame-1100

ter: bit_cutoffs="gathering") and BUSCO bitscore cutoffs to the HMMs of near-universal single-copy1101

orthologs. Identified plasmids were assigned to replicon families using MOB-typer [83] (version 3.1.9).1102

AMR genes were annotated using AMRFinderPlus [84] (version 4.0.3), and AMPs were identified with1103

Macrel [85] (version 1.5.0).1104

To cluster plasmids, we first computed pairwise sequence similarities using BLAST [57] (version 2.16.0,1105

parameters: -task megablast -evalue 1e-5) and the anicalc.py script from CheckV [86] to compute1106

pairwise similarity metrics. We then constructed a similarity graph connecting pairs of plasmids exhibiting1107

sequence identity ≥ 90% and bidirectional alignment coverage ≥ 90%, and clustered the plasmids using1108

the pyLeiden [87] tool.1109

We evaluated Faith’s phylogenetic diversity of selected replicases and relaxases (Data Availability,1110

Plasmid PD Table) from newly identified plasmids and complete plasmids retrieved from PLSDB (release1111

2024 05 31 v2) and IMG/PR. Genes encoding these proteins were identified using hmmsearch, and multi-1112

ple sequence alignments were generated with PyHMMER’s hmmalign function (parameters: trim=True,1113

all consensus cols=False). These alignments were then trimmed with the gappyout algorithm from1114

PytrimAl [88] (version 0.8.0) and phylogenetic trees were inferred with FastTree [89] (version 2.1.11).1115

We surveyed plasmid presence across all samples by mapping contigs from version 1.1 assemblies to1116

plasmid cluster representatives using minimap2 (version 2.28, parameters: -x sr --sam-hit-only -a).1117

A plasmid cluster was considered present in a sample if ≥ 75% of its length was covered by alignments1118

from that sample.1119

3.17 Antimicrobial resistance genes discovery and analyses1120

We analysed the presence of antimicrobial resistance (AMR) genes across 26.7 million SRA accessions1121

via the Logan v1.1 contigs. AMR gene hits were identified by aligning the CARD nucleotide database1122

(version 3.3.0) to Logan contigs using minimap2, as per Section 3.2 (see Data Availability). Alignments1123

were filtered to contain only those sequences with >100 bp length and >80% identity. SRA meta-1124

data and extended geolocation data (see Data Availability) were used to classify information on CARD1125

alignment SRA accession hits. For analyses based on organism classification, datasets were classified as1126

organism type Metagenome if SRA metadata field organism contains the string “metagenome”, or if the1127

field librarysource contains “METAGENOMIC” or “METATRANSCRIPTOMIC”; otherwise, acces-1128

sions were classified as Isolate. Metagenome categories were classified according to the organism and1129

librarysource fields, dividing it into the 6 top categories: human, livestock, soil, marine, freshwater,1130
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wastewater. Plasmid metadata was extended analogously to SRA samples. For Extended Data Fig. 7d-1131

g), the SRA-CARD alignment dataset was filtered to include only samples with known collection dates,1132

geolocation, metagenomic origin, and those more likely to contain whole genome/transcriptome assay1133

types (WGS, WGA, RNA-Seq, etc.). All code and datasets can be accessed in: https://github.com/1134

mmontonerin/logan_AMR1135

3.18 Comparison of Logan metagenomes with GenBank WGS via FracMinHash1136

sketches1137

FracMinHash sketches were created with sourmash [90] for each Logan unitigs accession whose SRA1138

metadata information indicated it was a metagenome (total of 4,792,069 accessions). We used a k-mer1139

size of 31 and a scale factor of 1,000. The resulting sketches, comprised of 449,087,511,713 hashes with1140

duplicates, were then placed in a duckDB database [91]. Code to process these data are available at:1141

https://github.com/KoslickiLab/ingest_logan_yacht_data.1142

We then crawled the GenBank Whole Genome Shotgun (WGS) FTP server, downloaded and sketched1143

each *.fsa nt.gz assembly with sourmash using the same k-mer size of 31 and scale factor of 1,000. Of the1144

2,055,047 *.fsa nt.gz files discovered on this FTP server, 5 led to HTTP error code 404 when attempting1145

to download them. Signatures were stored as compressed *.sig.zip archives. We extracted all 64-bit1146

FracMinHash hash values, a total of 32,701,966,322 hashes with duplicates, and partitioned them by a low-1147

bits bucket function to enable external-memory de-duplication. We then reduced each bucket to its exact1148

set of 8,679,649,739 unique hashes and wrote a partitioned Parquet dataset which we ingest into DuckDB.1149

To compare against the Logan metagenome sketches, we attached the Logan metagenome FracMinHash1150

sketches, and again bucketed into Parquet files and computed set differences with bucket-wise anti-joins in1151

DuckDB to report the number of 31-mers (appearing twice or more) unique to each dataset: 32,287,730,8821152

in the Logan metagenomes not in GenBank WGS, and 7,020,467,844 in GenBank WGS not in the Logan1153

metagenome sketches. Since a scale factor of 1,000 was used to form the sketches, multiplying these number1154

of hashes by 1,000 results in the estimated total number of 31-mers, each appearing twice or more in each1155

dataset. All code can be accessed at: https://github.com/KoslickiLab/GenBank_WGS_analysis.1156

3.19 Geographic Metadata Extraction, Inference and Enrichment1157

99.7% of SRA submissions are associated with a BioSample https://www.ncbi.nlm.nih.gov/biosample1158

record. BioSamples contain zero or many attribute [name, value] tuples with submitter-supplied metadata1159

that describes the biological sample. A full XML dump of the BioSample database was retrieved on June1160

28, 2024, comprising 39,448,576 records with 568,885,433 attribute entries. A subset of attribute names1161

likely to contain geographical information was extracted using a large language model (gpt-3.5-turbo-1162

0125) combined with manual curation of the most frequently occurring ones. The distribution of attribute1163

names is heavily skewed and long-tailed: the eight most common names account for 92.84% of all entries1164

identified as containing geographical information.1165

Attribute values corresponding to this subset of attribute names were then used to infer geographic1166

coordinates. A deep learning classifier partitioned the values into three distinct categories: values likely1167

to contain numerical latitude and longitude pairs (coordinates); values likely to reference a location1168

by its common name (place names); and values which were explicitly annotated but whose meaning is1169

uninformative, e.g. “N/A”, “null”, “undefined”, etc. Coordinates were resolved directly to points on Earth1170

under the WGS 84 coordinate system. Place names were converted to coordinates using three different1171

geolocation services (Azure Maps https://azure.microsoft.com/en-us/products/azure-maps; and1172

Esri, HERE through AWS Location https://aws.amazon.com/location/). To quantify confidence in1173

these derived coordinates, a score of 0 to 6 was assigned depending on whether the locations returned by1174

the three services were within 8 km of each other (up to 3 points), and whether they were found within1175

the political boundaries of the same country (up to 3 points). Values classified as uninformative were1176

discarded. In total, geographic coordinates were obtained for 26,962,465 (68.34%) of BioSample entries.1177
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The geographic dataset was further enriched by cross-referencing it with the following publicly avail-1178

able resources: ASTER Global Digital Elevation Model https://cmr.earthdata.nasa.gov/search/1179

concepts/C1711961296-LPCLOUD.html to extract elevation in meters above mean sea level; World Ad-1180

ministrative Boundaries https://public.opendatasoft.com/explore/dataset/world-administrative-1181

boundaries/export/ to assign political boundaries such as countries and regions; and WWF Terrestrial1182

Ecoregions of the World https://www.worldwildlife.org/publications/terrestrial-ecoregions-1183

of-the-world to classify BioSamples into 14 distinct biomes characterized by their unique biodiversity1184

and environmental conditions.1185

4 Data Availability1186

Logan is publicly available [37] on AWS Registry of Open Data at https://registry.opendata.aws/1187

pasteur-logan/. There are no egress charges and anonymous access is permitted. A data access tutorial1188

is provided at https://github.com/IndexThePlanet/Logan. PETadex data can be found at https://1189

github.com/ababaian/petadex. AMR datasets can be found at s3://logan-pub/paper/AMR. Obelisk1190

data and code can be found at s3://logan-pub/paper/Obelisk, and the Obelisk Data Methods is1191

methods.pdf within this folder. Plasmid sequence and metadata can be found at s3://logan-pub/1192

paper/plasmids, and the Plasmid PD Table is plasmid_phylogenetic_diversity.xlsx within this1193

folder.1194
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Extended Data1246

Extended Data Fig. 1: Logan assembly performance and computational statistics for processing
the entire SRA. This figure details the performance benchmarks of the Logan pipeline and quantifies
the cloud computing resources used to assemble 27 million SRA datasets.
(Top Left) A histogram showing the distribution of assembly contiguity, measured by contig N50, across
all Logan assemblies. Assemblies are categorized by input SRA assay type, showing that Whole Genome
Shotgun (WGS/WGA) samples generally produce more contiguous assemblies than RNA-Seq or other
samples, as expected.
(Top Middle and Right) Performance benchmarks comparing the Logan assembly pipeline to other state-
of-the-art short read metagenome assembly tools (Penguin, maviralSPAdes). Logan pipeline demonstrates
significantly lower wall-clock running time (middle) and memory usage (right) across a range of input
data sizes, highlighting its efficiency.
(Bottom) Statistics from the full-scale production run. Global statistics summarize the total compute
effort, including processing 50 petabases of input data over 30 million CPU hours. The vCPU Usage Over
Time plot for the main production run illustrates the dynamic allocation of cloud processors, peaking at
over 2.18 million vCPUs. Run 6 statistics detail the single largest run, where 19.6 petabases of data were
assembled in just 7 hours.
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Extended Data Fig. 2: PETadex-Logan Workflow. (a) Characterization of the initial 213 plastic-
active enzymes from the PAZy database. (i) A network graph showing sequence similarity between
the known enzymes, colored by protein family. (ii) Bar chart showing the distribution of these enzymes
across protein families and the types of plastics they degrade. (iii) Schematic of the hierarchical clustering
strategy used to group sequences at the enzyme (90% identity), family (30% identity), and domain (CATH)
levels. (b) The two-stage deep homology search pipeline. (i) The first stage queried PAZy sequences
against the NCBI nr database. After filtering for domain integrity and clustering, this step yielded 1.05
million enzyme clusters, creating the PETadex-nr dataset. (ii) In the second stage, PETadex-nr was
queried against the entire Logan assembled contigs, identifying 735 million novel sequences and massively
expanding the diversity into the final PETadex-Logan dataset. (c) A phylogenetic tree of the IsPETase-
like A/B Hydrolase clade. The tree visually demonstrates the expansion of sequence diversity uncovered
by the Logan search compared to the previously known diversity from public databases like PAZy and
GenBank (blue labels). Sequences selected for experimental evaluation are labeled.
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Extended Data Fig. 3: PETase Halo Assay. (a) Clearing and white halo detection with yeast colonies
expressing surface displayed or secreted PETase enzymes. Yeast strains were robotically pinned onto YPD
medium containing 12.5 mM or 25 mM BHET and incubated for 8 to 72 hours at 30 degrees Celsius.
Plates were imaged before (open circle) and after (closed circle) washing colonies off the plate. (b)
Clearing and white halo quantification from washed YPD plates containing 12.5 mM or 25 mM BHET.
Pixel intensity of the colony area was measured using a custom R pipeline (see Methods) on images from
(a). Data is depicted as the background normalized median pixel intensity under each colony over time
for the indicated PETases; n=3. (c) High-Performance Liquid Chromatography (HPLC) analysis of the
clearing zone identifies the MHET reaction product. Agar plugs were excised from the plates in (a) for the
displayed PETases , empty vector control, and regions with no yeast cells, after 72 hours of yeast growth
on 12.5 mM BHET, and dissolved in DMSO prior to HPLC analysis. Representative chromatograms are
shown; n ≥ 2. Coloured shading indicates the identity of each peak. (d) HPLC analysis of the white
halo identifies MHET and BHET dimer reaction products. Agar plugs were excised from the plates in (a)
for the displayed PETases , empty vector control, and regions with no yeast cells, after 72 hours of yeast
growth on 25 mM BHET, and dissolved in DMSO prior to HPLC analysis. Representative chromatograms
are shown; n ≥ 2. Coloured shading indicates the identity of each peak. (e) Mass spectrometric (MS)
analysis of MHET, BHET, and BHET dimer purified from a white halo extracted under a yeast colony
expressing surface-displayed IsPETase after 24 hours on YPD plus 25 mM BHET. Representative spectra
are shown with the mass to charge ratio of the most abundant component indicated; n = 3. The chemical
structures of BHET, MHET and putative BHET dimer are shown along with their predicted ionized mass.
(f) HPLC analysis of 10 nmol of HPLC-purified BHET, and 10 nmol of HPLC-purified BHET dimer.
Coloured shading indicates the identity of each peak. (g) Correlation plot of absorbance peak areas from
HPLC analysis of the indicated amounts of purified BHET and BHET dimer. The linear regression line
is plotted. (h) MS quantification of MHET and BHET dimer from agar plug extraction. Agar plugs
were obtained from an area of YPD plus BHET 25 mM with no yeast colony (no cells) or under the yeast
colonies (after wash) containing the indicated constructs after 24 hours of incubation and processed as
in (d). Relative abundance is plotted, expressed as a ratio between spectral counts for MHET (top) or
BHET dimer (bottom) relative to the spectral counts obtained for BHET. EV: empty vector; P: IsPETase;
FP: FAST-PETase. (i,j) Quantification of BHET conversion in clearing zones and white halos over time.
Halos from the indicated strains, timepoints and BHET concentrations were processed as described in
(c,d) and analyzed by HPLC. Peak area for each analyte (BHET, MHET, BHET dimer) was measured
and expressed as a percentage relative to the sum of the peak areas for BHET+MHET+BHET dimer.
EV: empty vector; P: IsPETase; FP: FAST-PETase.
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Extended Data Fig. 4: High-throughput screening and HPLC validation of PETadex-Logan
enzymes. (a) Heatmap of the high-throughput activity screening results for Logan PETases and controls.
Enzyme activity was measured as the background normalized median pixel intensity under each colony on
YPD plates with 25mM BHET, at the indicated times, and in either surface displayed (D) or secreted (S)
constructs. The heatmap shows the average of quadruplicate pixel intensity measurements (in arbitrary
units, AU) after subtracting Empty Vector background values and scaling to approximately 100 units for
IsPETase at 48 hours. This screen was used to identify the active candidates for quantitative analysis.
(b) Quantification of BHET conversion in yeast strains expressing the top candidate PETase enzymes.
Strains were grown to saturation in YPD medium prior to adding BHET at the indicated concentrations.
BHET conversion reactions were allowed to proceed for 17 hours at 30°C, and culture supernatants were
analyzed by HPLC. The peak area for each analyte (BHET, MHET, BHET dimer) was measured and
expressed as a percentage of the sum of all peak areas normalized to 108 cells/ml, based on the cell
concentration at the time of BHET addition. D: surface displayed enzyme; S: secreted enzyme.
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Extended Data Fig. 5: Protein clustering workflow and its application in improving multiple
sequence alignment (MSA) diversity. (a) The workflow for creating the Logan90 and Logan50
clustered protein databases. Prodigal-predicted protein coding regions from all Logan contigs were first
separated into ’human’ and ’other’ categories, based on SRA metadata associated with their contig and
into ‘complete’ and ‘partial’, based on Prodigal’s output. The proteins were then clustered using Linclust
at 90% and subsequently 50% sequence identity to create representative protein sets for sensitive homology
searches. The numbers indicate billions (B) of proteins at each stage of the workflow. (b) A case study
demonstrating the value of Logan50 for enhancing MSA diversity (Neff, left panel) and improving structure
prediction quality (pLDDT, right panel) of 100 viral proteins with low-quality MSAs from the default
ColabFold database. We performed sensitive, iterative profile searches against the other-complete Logan50
database (y-axis) using MMseqs2 and compared the results to those from the default ColabFold database
(x-axis). In both panels, nearly all points lie above the diagonal, indicating that Logan50 yields more
diverse alignments and substantially improved structural predictions.
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Extended Data Fig. 6: Supporting information for identification and reactivation of HHV-6
in large-scale RNA-seq datasets. (a) Summary of HHV-6B reference transcriptome. Viral transcript
abundance was computed from a prior characterization of HHV-6 reactivation in CAR T cells (Sample
34; Day 19) [22]. Boxed genes represent selected sequences used as queries for Logan-Search. (b) UMAP
representation of cells profiled via scRNA-seq from lung organoid culture (PRJNA891766). Panels reflect
marker genes identifying a cluster of rare proliferating T cells (1.3% of total), including two HHV-6
super-expressor cells (82% of HHV-6 UMIs). (c) Quantification of all ChIP-seq libraries from CD4+ and
CD8+ TIL cultures (PRJNA901909 ). The abundance of HHV-6 MAPQ 30+ reads is shown with donors
stratified by three participating clinical trials. Arrow indicates a high HHV-6 reactivation donor with
no matched RNA-seq. (d) Single nucleotide variant analysis of Donor 10 and Donor 24 CD8+ ChIP-seq
analysis. Shown are allele frequencies of 72 high-confidence single-nucleotide variants that discriminate
the viral strains of the two donors.
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Extended Data Fig. 7: Global distribution of AMR-associated SRA accessions (a) Summary of
SRA accessions (top row) and plasmids (bottom row) categorized as AMR-positive (AMR+). First panel,
amount of AMR+ vs AMR- samples in the datasets. Second panel, from the AMR+ samples, how many
are classified as isolate (purple) or metagenome (yellow) as organism type. Final panel, from the AMR+
metagenome samples, distribution across metagenome categories (human: purple, soil: orange, livestock:
yellow, marine: blue, freshwater: green, wastewater: red, other: grey). (b) Log2 enrichment of organism
type categories in AMR+ datasets versus the average, in SRA accessions (top) and plasmids (bottom),
showing relative over- or underrepresentation. Data has been randomly subsampled to avoid bias driven
by categories with higher amount of data. (c) Log2 enrichment of metagenome categories among AMR+
datasets compared to the mean, for both SRA accessions (top) and plasmids (bottom). Positive values
indicate overrepresentation in AMR+ samples. Data has been randomly subsampled to avoid bias driven
by categories with higher amount of data. (d) Geographic distribution of unique AMR+ SRA accessions
across the globe, coloured by metagenome category. Circle size indicates the number of unique accessions
per location. (e) Temporal trends in AMR gene discovery. Top: Collection date timeline of AMR+
accessions by organism type (isolate: purple, metagenome: yellow). Bottom: Collection date timeline of
AMR+ metagenome accessions coloured by metagenome category. (f) Distribution of AMR gene counts
per accession by metagenome category. (g) Log2 enrichment of AMR gene counts per metagenome
accession compared to the mean, by metagenome category. Positive values indicate metagenomes with
more AMR genes per accession on average. Data has been randomly subsampled to avoid bias driven by
categories with higher amount of data. In panels (c), (d), (e) bottom panel, (f), and (g), metagenome
category “other” was removed from the analysis.
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Extended Data Fig. 8: Expansion of P4 phage satellite genetic diversity. (a) Pipeline for dis-
covering novel P4 elements. (b) Histogram of novel P4 elements binned by SatelliteFinder type. (c)
Pangenome curve expressing accumulation of gene families clustered at 40% protein identity before (Ref-
Seq: Types A, B, and C) and after Logan expansion (Logan: Types A and B). (d) Weighted Genome
Relatedness Ratio Plot (wGRR) of full proteomes, defined as all proteins found between first and last
detected core gene, from before (RefSeq/black) and after (Logan/grey) Logan expansion, where a darker
color denotes higher similarity.
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